Azeka
|
Read other articles:
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Grigory Samoylovich KabakovNama asliГригорий Самойлович КабаковскийLahir2 Oktober 1909Kochubeivka, Poltava Uyezd, Kegubernuran Poltava, Kekaisaran RusiaMeninggal1959Raion Chutove, Oblast Poltava, RSS Ukraina, Uni SovietPeng...
本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...
Sporting event delegationCyprus at the2004 Summer OlympicsIOC codeCYPNOCCyprus Olympic CommitteeWebsitewww.olympic.org.cy (in Greek and English)in AthensCompetitors20 in 7 sportsFlag bearer Georgios Achilleos[1]Medals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)198019841988199219962000200420082012201620202024 Cyprus competed at the 2004 Summer Olympics in Athens, Greece, from 13 to 29 August 2004. Athletics Main article: Athletics at the 2004 Summe...
CimanggisKecamatanNegara IndonesiaProvinsiJawa BaratKotaDepokPemerintahan • CamatDody SetiawanKode Kemendagri32.76.02 Kode BPS3276040 Luas53,54 km²Desa/kelurahan6 Cimanggis adalah sebuah kecamatan di Kota Depok, provinsi Jawa Barat, Indonesia. Kecamatan Cimanggis berada di wilayah Depok sebelah timur, berada pada ketinggian ± 115 M di atas permukaan laut dan daerah ini mempunyai curah hujan rata-rata 200,91 mm/tahun. Kecamatan ini merupakan pemekaran dari Kecamatan Gun...
For other uses, see Broken Hill (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Broken Hill – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this message) City in New South Wales, AustraliaBroken HillNew South WalesArgent Street, Broken Hill's main ...
Pour les articles homonymes, voir Jeannette. Jeannette 1850 Magasin d'usine à Colombelles Création 1850 à Caen Dates clés 1925 : Association Lucien Jeannette, Pierre Mollier et Albert Boissel 1986 : achat par Gringoire-Brossard 2013 : liquidation judiciaire2015 : Financement participatif Fondateurs Pierre Mollier Personnages clés Lucien JeannetteJean et Raymond VinchonGeorges Viana Forme juridique Société par actions simplifiée Slogan Soyez gourmand mais exigeant!...
Untuk versi bukunya, lihat Dua Menara. The Lord of the Rings: The Two TowersPoster promosiSutradaraPeter JacksonProduserPeter JacksonBarrie M. OsborneFrances WalshSkenarioFrances WalshPhilippa BoyensStephen SinclairPeter JacksonBerdasarkanDua MenaraJ. R. R. TolkienPemeranElijah WoodSean AstinViggo MortensenIan McKellenAndy SerkisLiv TylerCate BlanchettJohn Rhys-DaviesBernard HillChristopher LeeBilly BoydDominic MonaghanOrlando BloomHugo WeavingMiranda OttoDavid WenhamBrad DourifAndy SerkisSea...
British prince (1900–1974) For the youngest son of Charles I, see Henry Stuart, Duke of Gloucester. Prince HenryDuke of GloucesterPrince Henry c. 194511th Governor-General of Australia In office30 January 1945 – 11 March 1947MonarchGeorge VIPrime MinisterJohn CurtinFrank FordeBen ChifleyPreceded byThe Lord GowrieSucceeded bySir William McKell BornPrince Henry of York(1900-03-31)31 March 1900York Cottage, Sandringham, EnglandDied10 June 1974(1974-06-10) (aged 74)Barnwell ...
Type of armored personnel carrier with direct-fire support Not to be confused with Improvised fighting vehicle. IFV redirects here. For the Institut Français, see Institut français de Vienne. A M2 Bradley tracked infantry fighting vehicle in US service during the Second Battle of Fallujah (2004) A Russian BMP-3 with embarked infantry An infantry fighting vehicle (IFV), also known as a mechanized infantry combat vehicle (MICV),[1] is a type of armoured fighting vehicle used to carry ...
Kejuaraan Dunia Tenis Meja Tunggal Putra Putri Ganda Putra Putri Campuran Tim Putra Putri Sebelumnya 1985 Selanjutnya 1989 Kejuaraan Tenis meja Dunia 1987 yang diadakan di New Delhi[1][2] acara ini diadakan mulai 19 Februari hingga 1 Maret 1987.[3] Hasil Tim Event Emas Perak Perunggu Swaythling CupMen's Team TiongkokChen LongcanChen Xinh...
56-й окремий вертолітний загін — військове формування Збройних сил України, що виконувало завдання у складі Місії ООН у Ліберії з січня 2004 року[1] до лютого 2018 року[2]. Український Мі-8 56-го вертольотного загону Чисельність контингенту Загальна чисельність загону...
Horticulture practice to shape trees and shrubs This article is about the practice of training plants. For the planned Shane Carruth film, see A Topiary. For the hacktivist, see Topiary (hacktivist). Topiary animal in Tulcán, Ecuador Jacques Cartier Park, Gatineau, Canada Topiary is the horticultural practice of training perennial plants by clipping the foliage and twigs of trees, shrubs and subshrubs to develop and maintain clearly defined shapes,[1] whether geometric or fanciful. T...
I diritti delle persone LGBT (lesbiche, gay, bisessuali e transgender) in Albania sono meno tutelati rispetto ad altri paesi europei. L'omosessualità è stata decriminalizzata nel 1995. Le famiglie guidate da coppie dello stesso sesso non dispongono delle stesse protezioni legali disponibili per le coppie formate da individui di sesso opposto, e non esistono delle forme di regolamentazione per le coppie omosessuali. Nel 2015 l'Associazione Internazionale delle Lesbiche, Gay, Bisexual, Trans ...
Welsh local election 2017 election results map, showing numbers of councillors per ward and their party affiliations The 2017 Denbighshire County Council election took place in Denbighshire, Wales, on 4 May 2017 to elect members of Denbighshire Council.[1] This was the same day as other 2017 United Kingdom local elections. The previous elections took place in 2012 and the next all-council elections took place in 2022. Background Though the Labour Party had ended up as the largest grou...
Relaxation of strained international relations by verbal communication For other uses, see Détente (disambiguation). Not to be confused with Detent. This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. See Wikipedia's guide to writing better articles for suggestions. (April 2020) (Learn how and when to remove this message) Leonid Brezhnev, Viktor Sukhodrev, and Richard Nixon during Brezhnev's 1973 visit to Washington, D.C., a high-water mark in détente betwe...
Shefa-'Amr שְׁפַרְעָםشفاعمروTranskripsi bahasa Ibrani • ISO 259Šparˁam • Juga dieja sebagaiShfar'am (official) [[Shefa-'Amr|]]DistrikUtaraPemerintahan • JenisKota • Kepala DaerahNahd KhazemLuas • Total19.766 dunams (19,766 km2 or 7,632 sq mi)Populasi (2012) • Total38.343 • Kepadatan1,9/km2 (5,0/sq mi) Shefa-'Amr, juga Shfar'am (bahasa Arab:...
Sitio de Gibraltar la ReconquistaFecha Mayo de 1436Lugar GibraltarCoordenadas 36°09′19″N 5°20′45″O / 36.155341, -5.345964Resultado Victoria nazaríBeligerantes Corona de Castilla Reino de Granada Comandantes Enrique de Guzmán, conde de Niebla Desconocido [editar datos en Wikidata] El sitio de Gibraltar de 1436 fue un infructuoso intento castellano de reconquistar esta plaza, perdida ante los benimerines en 1333. En él murió su promotor, el segundo conde ...
For other programming languages and concepts abbreviated as NPL, see NPL (disambiguation). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: NPL programming language – news · newspapers · books · scholar · J...
Form of mathematical proof Not to be confused with inductive reasoning. Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes.[1][2] Mathematical induction is a method for proving that a statement P ( n ) {\displaystyle P(n)} is true for every natural number n {\displaystyle n} , that is, that the infinitely many cases P ( 0 ) , P ( 1 ) , P ( 2 ) , P ( 3 ) , … {\displaystyle P(0),P(1),P(2),P(3),\dots } all...
هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) فيما يلي...