800 (angka)

799 800 801
Kardinaldelapan ratus
Ordinalke-800
(kedelapan ratus)
Faktorisasi25· 52
Pembagi1, 2, dan 5
RomawiDCCC
Biner11001000002
Ternari10021223
Kuaternari302004
Quinary112005
Senary34126
Oktal14408
Duodesimal56812
Heksadesimal32016
Vigesimal20020
Basis 36M836

800 (delapan ratus) adalah sebuah angka yaitu bilangan asli setelah 799 dan sebelum 801.

Merupakan jumlah empat bilangan prima berurutan (193 + 197 + 199 + 211) dan bilangan Harshad.

Bilangan bulat dari 801 sampai 899

800-an

  • 801 = 32 × 89, bilangan Harshad
  • 802 = 2 × 401, jumlah delapan bilangan prima berurutan (83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), nontotient, happy number (bilangan bahagia; nomor bahagia)
  • 803 = 11 × 73, jumlah tiga bilangan prima (263 + 269 + 271), jumlah sembilan berturut-turut bilangan prima (71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), bilangan Harshad
  • 804 = 22 × 3 × 67, nontotient, bilangan Harshad
    • "804" adalah julukan untuk Wilayah Greater Richmond di negara bagian Virginia, yang berasal dari kode area telepon (meskipun kode area itu meliputi area yang lebih besar).
  • 805 = 5 × 7 × 23
  • 806 = 2 × 13 × 31, bilangan sfenik, nontotient, jumlah totient untuk 51 bilangan bulat pertama, happy number
  • 807 = 3 × 269
  • 808 = 23 × 101, bilangan strobogrammatika[1]
  • 809 = bilangan prima, bilangan prima Sophie Germain,[2] prima Chen, prima Eisenstein dengan tidak ada bagian imajiner

810-an

  • 810 = 2 × 34 × 5, bilangan Harshad
  • 811 = bilangan prima, jumlah lima bilangan prima berturut-turut (151 + 157 + 163 + 167 + 173), Chen perdana, nomor bahagia, fungsi Mertens 811 menghasilkan 0
  • 812 = 22 × 7 × 29, bilangan pronik,[3] fungsi Mertens 812 menghasilkan 0
  • 813 = 3 × 271
  • 814 = 2 × 11 × 37, bilangan sfenik, fungsi Mertens 814 menghasilkan 0, nontotient
  • 815 = 5 × 163
  • 816 = 24 × 3 × 17, bilangan tetrahedral,[4] bilangan Padovan,[5] bilangan Zuckerman
  • 817 = 19 × 43, jumlah tiga bilangan prima berurutan (269 + 271 + 277), bilangan heksagonal berpusat[6]
  • 818 = 2 × 409, nontotient, bilangan strobogrammatika[1]
  • 819 = 32 × 7 × 13, bilangan piramidal kuadrat[7]

820-an

  • 820 = 22 × 5 × 41, bilangan triangular,[8] bilangan Harshad, nomor bahagia, repdigit (1111) dalam basis 9
  • 821 = bilangan prima, prima kembar, prima Eisenstein dengan tidak ada bagian imajiner, prima quadruplet dengan 823, 827, 829
  • 822 = 2 × 3 × 137, jumlah dua belas bilangan prima berturut-turut (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97), bilangan sfenik, anggota deret Mian–Chowla[9]
  • 823 = bilangan prima, prima kembar, fungsi Mertens 823 menghasilkan 0, prima quadruplet dengan 821, 827, 829
  • 824 = 23 × 103, jumlah sepuluh bilangan prima berurutan (61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), fungsi Mertens 824 menghasilkan 0, nontotient
  • 825 = 3 × 52 × 11, bilangan Smith,[10] fungsi Mertens 825 menghasilkan 0, bilangan Harshad
  • 826 = 2 × 7 × 59, bilangan sfenik
  • 827 = bilangan prima, prima kembar, bagian dari perdana quadruplet dengan {821, 823, 829}, jumlah tujuh berturut-turut bilangan prima (103 + 107 + 109 + 113 + 127 + 131 + 137), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner, strictly non-palindromic number[11]
  • 828 = 22 × 32 × 23, bilangan Harshad
  • 829 = bilangan prima, prima kembar, prima quadruplet dengan {827, 823, 821}, jumlah tiga bilangan prima berurutan (271 + 277 + 281), Chen perdana

830-an

  • 830 = 2 × 5 × 83, bilangan sfenik, jumlah empat bilangan prima berturut-turut (197 + 199 + 211 + 223), nontotient, jumlah totient untuk 52 bilangan bulat pertama
  • 831 = 3 × 277
  • 832 = 26 × 13, bilangan Harshad
  • 833 = 72 × 17
  • 834 = 2 × 3 × 139, bilangan sfenik, jumlah enam bilangan prima berturut-turut (127 + 131 + 137 + 139 + 149 + 151), nontotient
  • 835 = 5 × 167, bilangan Motzkin[12]
  • 836 = 22 × 11 × 19, bilangan aneh
  • 837 = 33 × 31
  • 838 = 2 × 419
  • 839 = bilangan prima, prima aman,[13] jumlah lima bilangan prima berturut-turut (157 + 163 + 167 + 173 + 179), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner, highly cototient number[14]

840-an

  • 840 = 23 × 3 × 5 × 7, highly composite number,[15] angka terkecil yang dapat dibagi oleh angka 1 sampai 8 (lowest common multiple dari 1 sampai 8), sparsely totient number,[16] bilangan Harshad dalam basis 2 sampai basis 10
  • 841 = 292 = 202 + 212, jumlah tiga bilangan prima berturut-turut (277 + 281 + 283), jumlah sembilan bilangan prima berturut-turut (73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109), centered square number,[17] centered heptagonal number,[18] centered octagonal number[19]
  • 842 = 2 × 421, nontotient
  • 843 = 3 × 281, bilangan Lucas[20]
  • 844 = 22 × 211, nontotient
  • 845 = 5 × 132
  • 846 = 2 × 32 × 47, jumlah delapan bilangan prima berturut-turut (89 + 97 + 101 + 103 + 107 + 109 + 113 + 127), nontotient, bilangan Harshad
  • 847 = 7 × 112, nomor bahagia
  • 848 = 24 × 53
  • 849 = 3 × 283, fungsi Mertens 849 menghasilkan 0

850-an

  • 850 = 2 × 52 × 17, fungsi Mertens 850 menghasilkan 0, nontotient, Fair Isaac credit score maksimum, kode panggilan negara untuk Korea Utara
  • 851 = 23 × 37
  • 852 = 22 × 3 × 71, bilangan pentagonal,[21] bilangan Smith[10]
  • 853 = bilangan prima, bilangan Perrin,[22] fungsi Mertens 853 menghasilkan 0, rata-rata dari pertama 853 bilangan prima adalah bilangan bulat (urutan (barisan A045345 pada OEIS)OEIS(barisan A045345 pada OEIS), strictly non-palindromic number, jumlah grafik yang terhubung dengan 7 node
    • kode panggilan negara untuk Makau
  • 854 = 2 × 7 × 61, nontotient
  • 855 = 32 × 5 × 19, bilangan dekagonal,[23] centered cube number[24]
    • kode panggilan negara untuk Kamboja
  • 856 = 23 × 107, bilangan nonagonal,[25] centered pentagonal number,[26] happy number
    • kode panggilan negara untuk Laos
  • 857 = bilangan prima, jumlah tiga bilangan prima berurutan (281 + 283 + 293), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner
  • 858 = 2 × 3 × 11 × 13, bilangan Giuga[27]
  • 859 adalah bilangan prima

860-an

  • 860 = 22 × 5 × 43, jumlah empat bilangan prima berturut-turut (199 + 211 + 223 + 227)
  • 861 = 3 × 7 × 41, bilangan sfenik, triangular number, bilangan heksagonal,[28] bilangan Smith[10]
  • 862 = 2 × 431
  • 863 = bilangan prima, prima aman, jumlah lima bilangan prima berturut-turut (163 + 167 + 173 + 179 + 181), jumlah tujuh bilangan prima berturut-turut (107 + 109 + 113 + 127 + 131 + 137 + 139), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner
  • 864 = 25 × 33, jumlah prima kembar (431 + 433), jumlah enam bilangan prima berturut-turut (131 + 137 + 139 + 149 + 151 + 157), bilangan Harshad
  • 865 = 5 × 173,
  • 866 = 2 × 433, nontotient
  • 867 = 3 × 172
  • 868 = 22 × 7 × 31, nontotient
  • 869 = 11 × 79, fungsi Mertens 869 menghasilkan 0

870-an

  • 870 = 2 × 3 × 5 × 29, jumlah sepuluh bilangan prima (67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), bilangan pronik,[3] nontotient, sparsely totient number,[16] bilangan Harshad
  • 871 = 13 × 67
  • 872 = 23 × 109, nontotient
  • 873 = 32 × 97, jumlah enam faktorial dari 1
  • 874 = 2 × 19 × 23, jumlah dua puluh tiga bilangan prima pertama, jumlah tujuh pertama faktorial dari 0, nontotient, bilangan Harshad, nomor bahagia
  • 875 = 53 × 7
  • 876 = 22 × 3 × 73
  • 877 = bilangan prima, bilangan Bell,[29] prima Chen, fungsi Mertens 877 menghasilkan 0, strictly non-palindromic number.[11]
  • 878 = 2 × 439, nontotient
  • 879 = 3 × 293

880-an

  • 880 = 24 × 5 × 11, bilangan Harshad; bilangan 148-gonal; jumlah n×n magic square untuk n = 4.
  • 881 = bilangan prima, prima kembar, jumlah sembilan bilangan prima berturut-turut (79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner, happy number
  • 882 = 2 × 32 × 72, bilangan Harshad, jumlah totient untuk 53 bilangan bulat pertama
  • 883 = bilangan prima, prima kembar, jumlah tiga bilangan prima berturut-turut (283 + 293 + 307), fungsi Mertens 883 menghasilkan 0
  • 884 = 22 × 13 × 17, fungsi Mertens 884 menghasilkan 0
  • 885 = 3 × 5 × 59, bilangan sfenik
  • 886 = 2 × 443, fungsi Mertens 886 menghasilkan 0
    • kode panggilan negara untuk Taiwan
  • 887 = bilangan prima diikuti oleh primal kesenjangan 20, prima aman,[13] prima Chen,[13] prima Eisenstein dengan tidak ada bagian imajiner
  • 888 = 23 × 3 × 37, jumlah delapan berturut-turut bilangan prima (97 + 101 + 103 + 107 + 109 + 113 + 127 + 131), bilangan Harshad, strobogrammatic nomor[1]
  • 889 = 7 × 127, fungsi Mertens 889 menghasilkan 0

890-an

  • 890 = 2 × 5 × 89, bilangan sfenik, jumlah empat bilangan prima berturut-turut (211 + 223 + 227 + 229), nontotient
  • 891 = 34 × 11, jumlah lima bilangan prima berturut-turut (167 + 173 + 179 + 181 + 191), bilangan oktahedral
  • 892 = 22 × 223, nontotient
  • 893 = 19 × 47, fungsi Mertens 893 menghasilkan 0
    • Dianggap sebagai angka sial di Jepang, karena angka-angkanya jika dibaca secara berurutan adalah terjemahan harfiah dari yakuza.
  • 894 = 2 × 3 × 149, bilangan sfenik, nontotient
  • 895 = 5 × 179, bilangan Smith,[10] bilangan Woodall,[30] fungsi Mertens dari 895 menghasilkan 0
  • 896 = 27 × 7, jumlah enam bilangan prima berturut-turut (137 + 139 + 149 + 151 + 157 + 163), fungsi Mertens 896 menghasilkan 0
  • 897 = 3 × 13 × 23, bilangan sfenik
  • 898 = 2 × 449, fungsi Mertens (898) menghasilkan 0, nontotient
  • 899 = 29 × 31, happy number

Referensi

  1. ^ a b c Sloane, N.J.A. (ed.). "Sequence A000787 (Strobogrammatic numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  2. ^ Sloane, N.J.A. (ed.). "Sequence A005384 (Sophie Germain primes)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  3. ^ a b Sloane, N.J.A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  4. ^ Sloane, N.J.A. (ed.). "Sequence A000292 (Tetrahedral numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  5. ^ Sloane, N.J.A. (ed.). "Sequence A000931 (Padovan sequence)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  6. ^ Sloane, N.J.A. (ed.). "Sequence A003215 (Hex (or centered hexagonal) numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  7. ^ Sloane, N.J.A. (ed.). "Sequence A000330 (Square pyramidal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  8. ^ Sloane, N.J.A. (ed.). "Sequence A000217 (Triangular numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  9. ^ Sloane, N.J.A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  10. ^ a b c d Sloane, N.J.A. (ed.). "Sequence A006753 (Smith numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  11. ^ a b Sloane, N.J.A. (ed.). "Sequence A016038 (Strictly non-palindromic numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  12. ^ Sloane, N.J.A. (ed.). "Sequence A001006 (Motzkin numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  13. ^ a b c Sloane, N.J.A. (ed.). "Sequence A005385 (Safe primes)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  14. ^ Sloane, N.J.A. (ed.). "Sequence A100827 (Highly cototient numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  15. ^ Sloane, N.J.A. (ed.). "Sequence A002182 (Highly composite numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  16. ^ a b Sloane, N.J.A. (ed.). "Sequence A036913 (Sparsely totient numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  17. ^ Sloane, N.J.A. (ed.). "Sequence A001844 (Centered square numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  18. ^ Sloane, N.J.A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  19. ^ Sloane, N.J.A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  20. ^ Sloane, N.J.A. (ed.). "Sequence A000032 (Lucas numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  21. ^ Sloane, N.J.A. (ed.). "Sequence A000326 (Pentagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  22. ^ Sloane, N.J.A. (ed.). "Sequence A001608 (Perrin sequence)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  23. ^ Sloane, N.J.A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  24. ^ Sloane, N.J.A. (ed.). "Sequence A005898 (Centered cube numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  25. ^ Sloane, N.J.A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  26. ^ Sloane, N.J.A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  27. ^ Sloane, N.J.A. (ed.). "Sequence A007850 (Giuga numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  28. ^ Sloane, N.J.A. (ed.). "Sequence A000384 (Hexagonal numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  29. ^ Sloane, N.J.A. (ed.). "Sequence A000110 (Bell or exponential numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 
  30. ^ Sloane, N.J.A. (ed.). "Sequence A003261 (Woodall numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Diakses tanggal 2016-06-11. 

Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

Mountainous region in Puebla, Mexico Relief map of Puebla The Sierra Norte de Puebla is a rugged mountainous region accounting for the northern third of the state of Puebla, Mexico. It is at the intersection of the Trans-Mexican Volcanic Belt and the Sierra Madre Oriental, between the Mexican Plateau and the Gulf of Mexico coast. From the Mesoamerican period to the 19th century, this area was part of a larger region called Totonacapan, and area dominated by the Totonac people, extending furth...

 

 

FK Crvena zvezdaCalcio Zvezda (Stella), Crveno-beli (Rosso-bianchi) Segni distintivi Uniformi di gara Casa Trasferta Terza divisa Colori sociali Rosso, bianco Inno Delije na Zvezda Dati societari Città Belgrado Nazione  Serbia Confederazione UEFA Federazione FSS Campionato Superliga Fondazione 1945 Presidente Svetozar Mijailović Allenatore Vladan Milojević Stadio Stadio Rajko Mitić(55 538 posti) Sito web www.crvenazvezdafk.com Palmarès Titoli nazionali 19 Campionati di Jugosla...

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

 

Rieneck Lambang kebesaranLetak Rieneck NegaraJermanNegara bagianBayernWilayahUnterfrankenKreisMain-SpessartPemerintahan • MayorWolfgang KüberLuas • Total26,20 km2 (1,010 sq mi)Ketinggian182 m (597 ft)Populasi (2013-12-31)[1] • Total2.062 • Kepadatan0,79/km2 (2,0/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos97794Kode area telepon09354Pelat kendaraanMSPSitus webwww.rieneck.de Untuk keluarga bangsawan, lih...

 

 

American model (born 1984) For the TV journalist, see Sara Underwood (journalist). For the English-born American freethought lecturer and writer, see Sara A. Underwood. Sara Jean UnderwoodUnderwood at the E3 Expo 2011Playboy centerfold appearanceJuly 2006Preceded byStephanie LarimoreSucceeded byNicole VossPlayboy Playmate of the Year2007Preceded byKara MonacoSucceeded byJayde NicolePersonal detailsBorn (1984-03-26) March 26, 1984 (age 40)Portland, Oregon, U.S.Height5 ft 3 in (1...

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

Filipino jurist (1902–1994) In this Philippine name, the middle name or maternal family name is Luna and the surname or paternal family name is Reyes. The HonorableJ. B. L. Reyes64th Associate Justice of the Supreme Court of the PhilippinesIn officeJune 30, 1954 – August 19, 1972Appointed byRamon MagsaysayPreceded byRamón DioknoSucceeded byEstanislao FernandezVice-Chairman of the Presidential Committee on Human RightsIn office1986 – January 1987 Personal deta...

 

 

ستيفان التاسع   معلومات شخصية الميلاد سنة 1000 [1]  دوقية لورين  الوفاة 29 مارس 1058 (57–58 سنة)[2]  فلورنسا  مواطنة دوقية لورين  الديانة مسيحية مناصب بابا الفاتيكان (154 )   في المنصب9 أغسطس 1057  – 29 مارس 1058  فكتور الثاني  نيكولاس الثاني  الحياة ا�...

Ritratto di Febo da BresciaAutoreLorenzo Lotto Data1543-1544 Tecnicaolio su tela Dimensioni82×78 cm UbicazionePinacoteca di Brera, Milano Il Ritratto di Febo da Brescia è un dipinto a olio su tela (82x78 cm) di Lorenzo Lotto, databile al 1543-1544 e conservato nella Pinacoteca di Brera a Milano. Indice 1 Storia 2 Descrizione e stile 3 Bibliografia 4 Voci correlate 5 Altri progetti Storia L'opera è documentata nel libro contabile di Lotto come commissionata nell'aprile 1543 dal nobile ...

 

 

Society of Japan from 1603 to 1868 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Edo society – news · newspapers · books · scholar · JSTOR (July 2018) (Learn how and when to remove this message) A social hierarchy chart based on old academic theories. Such hierarchical diagrams were removed from Japanese t...

 

 

City in Lycoming County, Pennsylvania, United States Not to be confused with Williamsburg, Pennsylvania. City in Pennsylvania, United StatesWilliamsportCityClockwise from top left: skyline, downtown from 4th Street, The Weightman Block, Franco's Lounge and skyline panorama FlagSealNicknames: Wilpo, Billtown, The Port.Motto: The will is in usLocation of Williamsport in Lycoming County, PennsylvaniaWilliamsportLocation of Williamsport in PennsylvaniaShow map of PennsylvaniaWilliamspor...

أقصى الحدود التي بلغتها الخلافة الراشدة في عهد عثمان بن عفَّان سنة 654م. كانت دولة الخلافة الراشدة مقسمة إلى عدّة ولايات ذات حدود غير ثابتة، فقد كانت تتغير بين الحين والآخر وفق توسع الدولة. واختلفت سياسات الخلفاء الراشدين وطرق تعاملهم مع شؤون الدولة فيما بينهم، فكانت لكلِّ �...

 

 

Canon of rhetoric Part of a series onRhetoric History Ancient Greece Asianism Atticism Attic orators Calliope Sophists Ancient India Ancient Rome The age of Cicero Second Sophistic Middle Ages Byzantine rhetoric Trivium Renaissance Studia humanitatis Modern period Concepts Captatio benevolentiae Chironomia Decorum Delectare Docere Device Eloquence Eloquentia perfecta Eunoia Enthymeme Facilitas Fallacy Informal Figure of speech Scheme Trope Five canons Inventio Dispositio Elocutio Memoria Pron...

 

 

伊帕廷加 伊帕廷加(Ipatinga)是巴西的城市,位於該國東南部,距離貝洛奧里藏特217公里,由米納斯吉拉斯州負責管轄,面積165.5平方公里,海拔高度220米,2009年人口244,508。 外部連結 Official website (页面存档备份,存于互联网档案馆) Ipatinga.org 这是一篇與巴西相關的地理小作品。您可以通过编辑或修订扩充其内容。查论编 查论编 米納斯吉拉斯州市鎮首府及最大城市:贝�...

Overprint with hyphen, 1897. 5-mark Yacht, 1906. German South West Africa was a German colony in Africa, established in 1884 with the protection of the area around Lüderitz and abandoned during World War I, when the area was taken over by the British. The postal history of the colony started on 7 July 1888 at Otjimbingwe, when the regular postal service began using German postage stamps and postmarks reading OTYIMBINGUE. The service continued in this fashion for a number of years, eventuall...

 

 

American multinational footwear and apparel company For the song, see Skechers (song). Skechers USA, Inc.Headquarters in Manhattan Beach, CaliforniaCompany typePublicTraded asNYSE: SKX (Class A)S&P 400 componentIndustryClothingFounded1992; 32 years ago (1992)FounderRobert GreenbergHeadquartersManhattan Beach, California, U.S.Number of locations5,203 (2024)Area servedWorldwideKey peopleRobert Greenberg (chairperson and CEO)Michael Greenberg (president)ProductsSh...

 

 

Faruq de Egipto Rey de Egipto y de Sudán El rey Faruk, durante su coronación el 29 de julio de 1937.Reinado 28 de abril de 1936 - 26 de julio de 1952Predecesor Fu'ad ISucesor Fu'ad IIInformación personalOtros títulos Soberano de Nubia, Kordofán y DarfurCoronación 29 de julio de 1937Nacimiento 11 de febrero de 1920Palacio de Abdín,El Cairo, EgiptoFallecimiento 18 de marzo de 1965(45 años)Hospital de San Camilo,Roma, Italia ItaliaSepultura Mezquita Al-Rifa'i,El Cairo, EgiptoRe...

UEFA Futsal Champions League2023-2024 Competizione UEFA Futsal Champions League Sport Calcio a 5 Edizione 23ª Organizzatore UEFA Date Turno preliminare:23 - 26 agosto 2023Turno principale:24 - 29 ottobre 2023Turno élite:28 novembre - 3 dicembre 2023Final four:2 - 5 maggio 2024 Luogo Europa Partecipanti 55 Nazioni 51 Cronologia della competizione 2022-2023 2024-2025 Manuale La UEFA Futsal Champions League 2023-2024 è la 23ª edizione del torneo continentale riservato ai club di calcio a 5 ...

 

 

The Kayung totem pole in the Great Court of the British MuseumBeing installed in the Great CourtMaterialCedarHeight12 metres (39 ft)Createdc. 1850 in CanadaPresent locationThe Great Court of the British MuseumIdentificationAm1903,0314.1 The Kayung totem pole is a 12-metre (39 ft) totem pole made by the Haida people. Carved and originally located in the village of Kayung on Graham Island in British Columbia, Canada, it dates from around 1850. In 1903 it was sold by Charles Frederick...