^Kroese, D. P.; Brereton, T.; Taimre, T.; Botev, Z. I. Why the Monte Carlo method is so important today. WIREs Comput Stat. 2014, 6: 386–392. doi:10.1002/wics.1314.
Baeurle, Stephan A. Multiscale modeling of polymer materials using field-theoretic methodologies: A survey about recent developments. Journal of Mathematical Chemistry. 2009, 46 (2): 363–426. doi:10.1007/s10910-008-9467-3.
Berg, Bernd A. Markov Chain Monte Carlo Simulations and Their Statistical Analysis (With Web-Based Fortran Code). Hackensack, NJ: World Scientific. 2004. ISBN 981-238-935-0.
Caflisch, R. E. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7. Cambridge University Press. 1998: 1–49.
Davenport, J. H. Primality testing revisited. Proceeding ISSAC '92 Papers from the international symposium on Symbolic and algebraic computation. 1992: 123 129. ISBN 0-89791-489-9. doi:10.1145/143242.143290.
Doucet, Arnaud; Freitas, Nando de; Gordon, Neil. Sequential Monte Carlo methods in practice. New York: Springer. 2001. ISBN 0-387-95146-6.
Fishman, G. S. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer. 1995. ISBN 0-387-94527-X.
C. Forastero and L. Zamora and D. Guirado and A. Lallena. A Monte Carlo tool to simulate breast cancer screening programmes. Phys. In Med. And Biol. 2010, 55 (17): 5213–5229. Bibcode:2010PMB....55.5213F. doi:10.1088/0031-9155/55/17/021.
Gould, Harvey; Tobochnik, Jan. An Introduction to Computer Simulation Methods, Part 2, Applications to Physical Systems. Reading: Addison-Wesley. 1988. ISBN 0-201-16504-X.
Grinstead, Charles; Snell, J. Laurie. Introduction to Probability. 美國數學學會. 1997: 10–11.
Hammersley, J. M.; Handscomb, D. C. Monte Carlo Methods. London: Methuen. 1975. ISBN 0-416-52340-4.
M. Milik and J. Skolnick. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. Jan 1993, 15 (1): 10–25. PMID 8451235. doi:10.1002/prot.340150104.
P. Ojeda and M. Garcia and A. Londono and N.Y. Chen. Monte Carlo Simulations of Proteins in Cages: Influence of Confinement on the Stability of Intermediate States. Biophys. J. (Biophysical Society). Feb 2009, 96 (3): 1076–1082. Bibcode:2009BpJ....96.1076O. doi:10.1529/biophysj.107.125369.
Int Panis, L; De Nocker, L; De Vlieger, I; Torfs, R. Trends and uncertainty in air pollution impacts and external costs of Belgian passenger car traffic International. Journal of Vehicle Design. 2001, 27 (1–4): 183–194. doi:10.1504/IJVD.2001.001963.
Int Panis, L; Rabl, A; De Nocker, L; Torfs, R. P. Sturm , 编. Diesel or Petrol ? An environmental comparison hampered by uncertainty. Mitteilungen Institut für Verbrennungskraftmaschinen und Thermodynamik (Technische Universität Graz Austria). 2002,. Heft 81 Vol 1: 48–54.
Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. Numerical Recipes in Fortran 77: The Art of Scientific Computing. Fortran Numerical Recipes 1 Second. 劍橋大學出版社. 1996 [1986]. ISBN 0-521-43064-X.
Silver, David; Veness, Joel. Monte-Carlo Planning in Large POMDPs(PDF). Lafferty, J.; Williams, C. K. I.; Shawe-Taylor, J.; Zemel, R. S.; Culotta, A. (编). Advances in Neural Information Processing Systems 23. Neural Information Processing Systems Foundation. 2010 [2018-04-29]. (原始内容(PDF)存档于2012-05-25).
Szirmay-Kalos, László. Monte Carlo Methods in Global Illumination - Photo-realistic Rendering with Randomization. VDM Verlag Dr. Mueller e.K. 2008. ISBN 978-3-8364-7919-6.