PROFILPELAJAR.COM
Privacy Policy
My Blog
New Profil
Kampus
Prov. Aceh
Prov. Bali
Prov. Bangka Belitung
Prov. Banten
Prov. Bengkulu
Prov. D.I. Yogyakarta
Prov. D.K.I. Jakarta
Prov. Gorontalo
Prov. Jambi
Prov. Jawa Barat
Prov. Jawa Tengah
Prov. Jawa Timur
Prov. Kalimantan Barat
Prov. Kalimantan Selatan
Prov. Kalimantan Tengah
Prov. Kalimantan Timur
Prov. Kalimantan Utara
Prov. Kepulauan Riau
Prov. Lampung
Prov. Maluku
Prov. Maluku Utara
Prov. Nusa Tenggara Barat
Prov. Nusa Tenggara Timur
Prov. Papua
Prov. Papua Barat
Prov. Riau
Prov. Sulawesi Barat
Prov. Sulawesi Selatan
Prov. Sulawesi Tengah
Prov. Sulawesi Tenggara
Prov. Sulawesi Utara
Prov. Sumatera Barat
Prov. Sumatera Selatan
Prov. Sumatera Utara
Partner
Ensiklopedia Dunia
Artikel Digital
Literasi Digital
Jurnal Publikasi
Kumpulan Artikel
Profil Sekolah - Kampus
Dokumen 123
主理想環
此條目
没有列出任何
参考或来源
。
(
2021年6月17日
)
維基百科所有的內容都應該
可供查證
。请协助補充
可靠来源
以
改善这篇条目
。无法查证的內容可能會因為異議提出而被移除。
在
數學
中,
主理想環
是使得每個
理想
均可由單個元素生成的
環
。
如果一個主理想環同時也是
整環
,則稱之
主理想整環
(常簡寫為 PID)。
例子
整數
環
Z
{\displaystyle \mathbb {Z} }
是主理想域,更一般地說,
歐幾里德環
恆為主理想環。
域
上的(单变元)
多項式環
是主理想環。
高斯整數
環
Z
[
− − -->
1
]
{\displaystyle \mathbb {Z} [{\sqrt {-1}}]}
是主理想環。
艾森斯坦整數環
Z
[
ω ω -->
]
{\displaystyle \mathbb {Z} [\omega ]}
是主理想環,其中 ω 為任一非
1
{\displaystyle 1}
的三次
單位根
。
環
Z
[
5
]
{\displaystyle \mathbb {Z} [{\sqrt {5}}]}
非主理想環:可以證明理想
(
2
,
5
)
{\displaystyle (2,{\sqrt {5}})}
無法由單個元素生成。
查
论
编
抽象代数
相关主题
代数结构
·
群
·
环
·
域
·
有限域
·
本原元
·
格
·
逆元
·
等价关系
·
代數中心
·
同态
·
同构
·
商结构
(商系统)
·
同构基本定理
·
自由對象
群论
群
幺半群
·
半群
·
阿贝尔群
·
非阿贝尔群
·
循環群
·
有限群
·
单群
·
半单群
·
典型群
·
自由群
·
幂零群
·
可解群
·
p-群
·
对称群
·
李群
·
伽罗瓦群
·
商群
·
置换群
·
有限生成阿貝爾群
子群
陪集
·
交换子群
(
交換子
)
·
双陪集
·
共轭类
·
正规子群
·
群中心
·
中心化子和正规化子
·
稳定子群
群同態
群同構
·
群同態
相關定理
拉格朗日定理
·
西羅定理
·
波利亞計數定理
其他
阶
·
群擴張
·
群表示
·
群作用
·
合成列
環論
环
子環
·
整环
·
除环
·
多项式环
·
素环
·
商环
·
諾特環
·
局部環
·
賦值環
·
環代數
·
理想
·
主理想环
·
唯一分解整環
·
群環
模
深度
·
單模
·
自由模
·
平坦模
·
阿廷模
·
諾特模
其他
幂零元
·
特征
·
完備化
·
環的局部化
域論
域
有限域
·
原根
·
代数闭域
·
局部域
·
分裂域
·
分式環
域扩张
单扩张
·
有限扩张
·
超越扩张
·
代数扩张
·
正规扩张
·
可分扩张
·
伽罗瓦扩张
·
阿贝尔扩张
·
伽罗瓦理论基本定理