Drama (专辑)

DRAMA
炎亞綸迷你专辑
发行日期2014年5月30日
录制时间2014年
类型國語流行音樂
唱片公司華研國際音樂
制作人曲目列表
炎亞綸专辑年表
紀念日
(2012年)
DRAMA
(2014年)
CUT
(2014年)

DRAMA》是台灣歌手炎亞綸2014迷你專輯1號作品,在2014年5月30日發行,收錄炎亞綸領銜主演戲劇就是要你愛上我愛上兩個我最高詢問度之擋不住的太陽、1/2、這不是我…等等六首主題曲、片尾曲及插曲。

曲目

曲序 歌名 作詞 作曲 編曲 製作人 備註
01 1/2
One Out of Two
陳信延 孫英真손영진
林尚赫임상혁
孫英真
林尚赫
孫英真
林尚赫
與韓國歌姬G.NA跨海隔空對唱
愛上兩個我》片頭曲
02 這不是我
That's Not Me
陳信延 鄭楠 JerryC 呂禎晃 《愛上兩個我》片尾曲
03 多餘的我
The Unwanted Love
林夕 JerryC JerryC JerryC 《愛上兩個我》插曲
04 沒規矩
Unlimited
葛大為 郭文宗 JerryC 呂禎晃 《愛上兩個我》插曲
05 唯一的玫瑰
The Only Rose
姚若龍 曾國琿 游政豪 張簡君偉 《愛上兩個我》插曲
06 擋不住的太陽
Unstoppable Sun
姚若龍 陳小霞 宋濤 呂禎晃 就是要你愛上我》片尾曲

音樂錄影帶

歌名 執導 首播日期 附註
1/2 One Out of Two 陳映之 2014年5月27日 韓國歌姬G.NA特地來台演出
這不是我 That's Not Me 黃中平 2014年5月20日 李毓芬演出
多餘的我 The unwanted love 傅天余 2014年09月21日
擋不住的太陽 Unstoppable Sun 傅天余 2014年11月26日 郭雪芙演出

Read other articles:

Radio station in University Park, TexasKEXBUniversity Park, TexasBroadcast areaDallas/Fort Worth MetroplexFrequency1440 kHzBrandingRelevant RadioProgrammingFormatCatholic talk and teachingAffiliationsRelevant RadioOwnershipOwnerRelevant Radio, Inc.Sister stationsKTEK (Houston area)KIXL (Austin area) KRDY (San Antonio area)HistoryFirst air date1938 (as KDNT Denton)Former call signsKDNT (1938–1994)KICI (1994–1996)KINF (1996–1997)KTNO (1997–2019)Call sign meaningK EXperts in Business (fo...

 

العلاقات الإريترية السورينامية إريتريا سورينام   إريتريا   سورينام تعديل مصدري - تعديل   العلاقات الإريترية السورينامية هي العلاقات الثنائية التي تجمع بين إريتريا وسورينام.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: و�...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article n’est pas rédigé dans un style encyclopédique (février 2010). Vous pouvez améliorer sa rédaction ! Lu SuBiographieNaissance 172Chine (en)Décès 217Chine (en)Activités Homme politique, diplomate, milliardaireEnfant Lu Shu (d)modifier - modifier le code - modifier Wikidata Lu Su (172-217) est un vassal du royaume Wu, homme d'affaires et diplomate chinois. Biographie En l'an 200, sur les c...

Number of subsets of a given size nCk redirects here. For other uses, see NCK (disambiguation). The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written ...

 

«Гёроглы» (туркм. Görogly) — туркменский героический эпос, основанный на традиции устных рассказов о подвигах героя Гёроглы с его 40 всадниками. Памятник Гёроглы в Ашхабаде, Туркменистан Содержание 1 Исполнение 2 Сюжет 3 Значимость 4 Распространение 5 В других видах искусст...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tamil Nadu Civil Service – news · newspapers · books · scholar · JSTOR (September 2019) (Learn how and when to remove this message) Tamil Nadu Administrative Serviceதமிழ்நாடு நிர்வாக சேவைTamil Nadu logoAgency overviewForm...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Amsterdam University Press – news · newspapers · books · scholar · JSTOR (August 2011) (Learn how and when to remove this message) This article needs add...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

Pecut kuda Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Asterid Ordo: Lamiales Famili: Verbenaceae Genus: Stachytarpheta Spesies: Stachytarpheta cayennensis(Rich.) Vahl Sinonim[1] Abena cayennensis (Rich.) Hitchc. Lippia cylindrica Scheele Stachytarpheta australis Moldenke Stachytarpheta dichotoma (Ruiz & Pav.) Vahl Stachytarpheta gibberosa Rchb. Stachytarpheta guatemalensis Moldenke Stach...

U.S. national governing body for competitive swimming This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2009) (Learn how and when to remove this message) USA SwimmingSportSwimmingJurisdictionNationalAbbreviationUSA-SFounded1980 (1980)AffiliationUnited States Aquatic SportsHeadquartersColorado Springs, Colorado, United StatesPresidentTim Hinchey (2017�...

 

Belgian politician (1936–2013) Wilfried MartensMartens in 1989Leader of the European People's Party-European DemocratsIn office20 July 1994 – 20 July 1999Preceded byLeo TindemansSucceeded byHans-Gert PötteringPresident of the European People's PartyIn office16 July 1990 – 9 October 2013Preceded byJacques SanterSucceeded byJoseph DaulPrime Minister of BelgiumIn office17 December 1981 – 7 March 1992MonarchBaudouinPreceded byMark EyskensSucceeded byJean-Luc De...

 

Theories of quantum chemistry explained via relativistic mechanics Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of gold: due to relativistic effects, it is not silvery like most other metals.[1] The term relativistic effects was developed in light of the history of quantum mechanics. Ini...

La disjonction logique, ou disjonction non exclusive, de deux assertions est une façon d'affirmer qu'au moins une de ces deux assertions est vraie (la première, la deuxième, ou les deux). Dans le langage logique ou mathématique, et dans les domaines techniques qui l'emploient, elle se traduit par le OU logique, un opérateur logique dans le calcul des propositions. La proposition obtenue en reliant deux propositions par cet opérateur s'appelle également leur disjonction ou leur somme lo...

 

Movement for separate institutions This article is part of a series aboutBlack power History Black Arts Movement Black is beautiful Black power movement Black Power Revolution Kwanzaa Raised fist events of 1968 and 1972 Ideologies African socialism Africana womanism Afrocentrism Anti-Americanism Black anarchism Black feminism Black leftism Black nationalism Black pride Black separatism Black supremacy Intercommunalism Pan-Africanism Organizations African People's Socialist Party Assata's Daug...

 

Giuseppe Lepori Anggota Dewan Federal SwissMasa jabatan16 Desember 1954 – 31 Desember 1959PendahuluKarl KobeltPenggantiHans-Peter Tschudi Informasi pribadiLahir(1902-06-02)2 Juni 1902Meninggal6 September 1968(1968-09-06) (umur 66)KebangsaanSwissSunting kotak info • L • B Giuseppe Lepori (2 Juni 1902 – 6 September 1968) adalah politikus Swiss. Ia terpilih di Dewan Federal Swiss pada 16 Desember 1954 hingga meletakkan jabatan itu pada tanggal 31 Des...

У этого топонима есть и другие значения, см. Пичурино. ДеревняПичурино 55°28′12″ с. ш. 38°53′43″ в. д.HGЯO Страна  Россия Субъект Федерации Московская область Муниципальный район Орехово-Зуевский Сельское поселение Ильинское История и география Высота центра 132 м ...

 

Questa voce o sezione sull'argomento personaggi letterari non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Ariodante è un personaggio dell'Orlando Furioso di Ludovico Ariosto. Le sue vicende sono narrate nei canti V, VI e XVIII. AriodanteWilliam Hatherell, Il salvataggio di Ginevra ad opera di Ariodante S...

 

1975 studio album by HeartDreamboat AnnieStudio album by HeartReleasedSeptember 1975RecordedJuly–August 1975StudioCan-Base (Vancouver)GenreHard rock[1]arena rock[2]folk rockLength40:02LabelMushroomProducerMike FlickerHeart chronology Dreamboat Annie(1975) Magazine(1977) Singles from Dreamboat Annie How Deep It GoesReleased: April 1975[3] Magic ManReleased: June 1975 Crazy on YouReleased: March 1976[4] Dreamboat AnnieReleased: November 1976[5]...

One of the Five Classics of ancient Chinese literature Shang Shu redirects here. For the ruler of the state of Jin, see Shang Shu (Jin). Shangshu redirects here. For the place in Anji, Zhejiang, see Shangshu Township. This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: use of chinese-language text needs to be pared down or edited to conform with MOS:ZH. Please help improve this article if you can. (November 2023) (Learn how and when to remove this ...

 

Not to be confused with Tenrikyo. Religion of the Turko-Mongolic steppe Part of a series onTengrism A Central Asian–Eurasian Steppe and partly Siberian–East Asian religion Supreme deity Tengri Other deities/spirits Turkic Mongolic Movements Aiyy Faith Burkhanism Mongolian Tengerism Tengir Ordo Vattisen Yaly list Related movements Hungarian Native Faith Korean shamanism Manchu shamanism Siberian shamanism Shinto Chinese folk religion Wuism Bön Vietnamese folk religion Ông Trời People A...