Read other articles:
Species of bird Gabon coucal A Gabon coucal (above) Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Cuculiformes Family: Cuculidae Genus: Centropus Species: C. anselli Binomial name Centropus anselliSharpe, 1874 The Gabon coucal (Centropus anselli) is a species of cuckoo in the family Cuculidae. It is mainly found in Gabon but also occurs in neighboring areas of Cameroon, Angola...
Darren Bent Bent pada 2008Informasi pribadiNama lengkap Darren Ashley Bent [1]Tanggal lahir 6 Februari 1984 (umur 40)[1]Tempat lahir Tooting, InggrisTinggi 1,80 m (5 ft 11 in)[2]Posisi bermain PenyerangKarier junior0000–1998 Godmanchester Rovers1998–2001 Ipswich TownKarier senior*Tahun Tim Tampil (Gol)2001–2005 Ipswich Town 122 (48)2005–2007 Charlton Athletic 68 (31)2007–2009 Tottenham Hotspur 60 (18)2009–2011 Sunderland 58 (32)2011–2...
Perkiraan kasar Pangea Proxima menurut model awal di situs Proyek Paleomap Pangaea Proxima (juga disebut sebagai Pangaea Ultima, Neopangaea, dan Pangaea II) adalah kemungkinan konfigurasi benua raksasa masa depan dan alternatif dari superbenua Amasia. Sesuai dengan siklus benua raksasa, Pangaea Ultima akan terbentuk pada 256 juta tahun yang akan datang. Bentuk dari benua ini akan seperti telur karena benua ini memiliki danau raksasa ditengahnya, yang merupakan sisa tabrakan benua Amerika, Aus...
Sidang MABM tahun 2004 Majelis Antarbangsa Bahasa Melayu (bahasa Melayu : Majlis Antarabangsa Bahasa Melayu) atau singkatannya MABM adalah sebuah majelis khas di Malaysia yang didirikan pada tahun 1997 untuk menyelaraskan aktivitas kebahasaan yang menjurus kepada matlamat pengembangan bahasa Melayu di peringkat dunia. Sidang pertama diadakan pada tahun 1998 dengan peserta-peserta dari Malaysia, Indonesia, Singapura, Brunei, Prancis, Inggris, Rusia, Jerman, Amerika Serikat, India, Kamboja...
This is a list of Memphis Tigers men's basketball players who played in the National Basketball Association. Current NBA Players As of the 2023–24 NBA Season, seven former Tigers are currently signed to NBA rosters. Derrick Rose, Memphis Grizzlies (since 2023) Will Barton, Washington Wizards (since 2022) James Wiseman, Detroit Pistons (since 2023) Precious Achiuwa, New York Knicks (since 2024) Jalen Duren, Detroit Pistons (since 2022) Josh Minott, Minnesota Timberwolves (since 2022) Lester...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2023) (Learn how and when to remove this template message) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page...
Radio station in Provo–Salt Lake City, Utah KENZProvo, UtahBroadcast areaSalt Lake City metropolitan areaFrequency94.9 MHzBrandingPower 94.9 / 101.9ProgrammingFormatTop 40 (CHR)OwnershipOwnerCumulus Media(Radio License Holding CBC, LLC)Sister stationsKBEE, KBER, KHTB, KKAT, KUBL-FMHistoryFirst air date1981 (as KLRZ)Former call signsKLRZ (1981-1986)KBNG (1986-1987)KTOU (1987-1989)KZHT (1989-2004)KPHT (1/6/2004-1/16/2004)KMXU (1/16/2004-1/27/2004)KHTB (2004-2015)Technical information[1 ...
Cet article est une ébauche concernant la Chine et les arts martiaux. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Wu Yuxiang (1812?–1880?) a créé le style de t'ai chi ch'üan Wu(Hao) après dix ans d'entrainement avec le fondateur du style Yang, Yang Luchan, puis un mois avec Cheng Qingpi, un maître du style Chen de t'ai chi ch'üan. Le style Wu (武氏, wǔshì) ou style Wu/Hao (武/郝氏 wǔ/hǎosh�...
Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...
Bagian dari seriIslam Rukun Iman Keesaan Allah Malaikat Kitab-kitab Allah Nabi dan Rasul Allah Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al-Qur'an Sunnah (Hadis, Sirah) Tafsir Akidah Fikih Syariat Sejarah Garis waktu Muhammad Ahlulbait Sahabat Nabi Khulafaur Rasyidin Khalifah Imamah Ilmu pengetahuan Islam abad pertengahan Penyebaran Islam Penerus Muhammad Budaya dan masyarakat Akademik Akhlak Anak-anak Dakwah Demografi Ekonomi Feminisme Filsafat...
You can help expand this article with text translated from the corresponding article in Hungarian. (November 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this template: there ...
بَوَّابَةُ عِلْمِ ٱلْفَلَك البوابة مشروع ويكي الفلك أسبوع الويكي أحدث التغييرات تصنيفات حالياً توجد: 41٬656 مقالة في علم الفلك اطلع على إحداها علم الفلك هو الدراسة العلمية للأجرام السماوية (مثل النجوم، والكواكب، والمذنبات، والمجرات) والظواهر التي تحدث خارج نطاق الغلاف الج...
Orang KetigaGenre Drama Roman SkenarioSerena LunaCeritaSerena LunaSutradaraMaruli AraPemeran Naysilla Mirdad Marshanda Rionaldo Stokhorst Samuel Zylgwyn Indah Indriana Penggubah lagu temaPay dan DewiqLagu pembukaSebuah Rasa oleh Agnez MoLagu penutupSebuah Rasa oleh Agnez MoPenata musikLaurensius StevenNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode809ProduksiProduserLeo SutantoSinematografiBob Emilio PareraPenyunting Satria Alex Fernandes Rosario Bumi Kasumbo D...
Protected wilderness area in California, United States San Gabriel WildernessIUCN category Ib (wilderness area)Looking into the San Gabriel Wilderness with the San Gabriel Valley in the distanceMap of the United StatesLocationLos Angeles County, California, United StatesNearest cityPasadena, CaliforniaCoordinates34°14′48″N 117°59′08″W / 34.24667°N 117.98556°W / 34.24667; -117.98556Area36,118 acres (146.16 km2)Established1968Governing bodyU.S....
Esercito ItalianoStemma dell'Esercito Italiano Descrizione generaleAttiva18 giugno 1946 - oggi[1] Nazione Italia ServizioForza armata TipoEsercito Dimensione94.026 unità (oltre a 5.431 civili)[2] Stato Maggiore dell'EsercitoPalazzo Esercito,Roma SoprannomeStato maggiore dell'esercito italiano Patronosan Giovanni XXIII[3] MottoSalus rei publicae suprema lex estoSia la salvezza dello Stato la legge suprema ColoriIl distintivo su pendente in cuoio si compone d...
جورج وفريد ويزليمعلومات عامةجزء من عائلة ويزلي المهنة لاعب الكويدتش الصانع ج. ك. رولينغ المؤدي جيمس وأوليفر فيلبس موجود في عمل هاري بوتر من عالم خيالي عالم هاري بوتر امتياز إعلامي عالم السحرة لديه جزء أو أجزاء Fred Weasley (en) George Weasley (en) تعديل - تعديل مصدري - تعديل ويكي بيانات عالم...
Lines which intersect at a single point Lines A, B and C are concurrent in Y. In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point. The set of all lines through a point is called a pencil, and their common intersection is called the vertex of the pencil. In any affine space (including a Euclidean space) the set of lines parallel to a given line (sharing the same orientation) is also called a pencil, and the vertex of each pencil of paral...
In complex analysis, a Schwarz–Christoffel mapping is a conformal map of the upper half-plane or the complex unit disk onto the interior of a simple polygon. Such a map is guaranteed to exist by the Riemann mapping theorem (stated by Bernhard Riemann in 1851); the Schwarz–Christoffel formula provides an explicit construction. They were introduced independently by Elwin Christoffel in 1867 and Hermann Schwarz in 1869. Schwarz–Christoffel mappings are used in potential theory and some of ...
Il modulo tangente è dato dal valore della pendenza della curva sforzo-deformazione (σ-ε) corrispondente ad un certo valore di sforzo o deformazione. In campo elastico la curva sforzo-deformazione è rettilinea e il modulo tangente è uguale al modulo di Young. In campo plastico il modulo tangente può essere ricavato sperimentalmente o per via teorica (a partire dal modulo di Young attraverso la relazione di Ramberg–Osgood). Indice 1 Modulo tangente e instabilità a carico di punta 1.1 ...
Cet article est une ébauche concernant une localité allemande. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Berscheid Administration Pays Allemagne Land Rhénanie-Palatinat Arrondissement(Landkreis) Eifel-Bitburg-Prüm Bourgmestre(Ortsbürgermeister) Stephan Meutes Code postal 54673 Code communal(Gemeindeschlüssel) 07 2 32 012 Indicatif téléphonique 06524 Immatriculation BIT Démographie Population 59...