等势

数学领域中,两个集合等势的(英語:equinumerous)意為它们之间存在一个双射。這種性質经常叫做等势性(equinumerosity)。英文中也會用术语 equipotent 或 equipollent 來表示等勢。

定義

定義 —  是二集合,若 滿足

  • 間的函数
  • (每個 都可以用 的規則對到某
  • 都對到 則兩者相等 )

此時用以下符號簡記:

更進一步的,可以定義:

並可簡稱為等势的。

直觀上來說,就是任意 都可以透過函数 的規則,被唯一的一個 對應。而所謂的等勢,就是 間存在這樣的一對一且不遺漏的對應關係。

範例

是全体偶数的集合,那么,它与自然数集是等势的; 有理数与自然数是等势的(所有有理数与自然数是“一样多”的); 然而,无理数与自然数或有理数都不等势(无理数比有理数“个数多”)。

性質

範疇論的等勢

集合范畴中,带有函数作为态射的所有集合的范畴,在两个集合之间的同构正好是一个双射,而两个集合正好是等势的,如果它们在这个范畴中是同构的。

参见