在石墨烯內嵌入化學摻雜物可能會對載子遷移率產生影響,做實驗可以偵測出影響程度。有一組實驗者將各種各樣的氣體分子(有些是施體有些是受體)摻入石墨烯,他們發覺,甚至當化學摻雜物濃度超過1012 cm−2時,載子遷移率並沒有任何改變。[58]另一組實驗者將鉀摻入處於超高真空(ultra high vacuum)、低溫的石墨烯,他們發現鉀離子的物理行為與理論相符合,遷移率會降低20倍。假若,將石墨烯加熱,除去鉀摻雜物,則遷移率降低效應是可逆的[59]。
科學家認為石墨烯會是理想的自旋電子學材料,因為其自旋-軌道作用很小,而且碳元素幾乎沒有核磁矩(nuclear magnetic moment)。使用非局域磁阻效應,可以測量出,在室溫狀況,自旋注入於石墨烯薄膜的可靠性很高,並且觀測到自旋相干長度超過1微米[73]。使用電閘,可以控制自旋電流的極性[74]。
2005年,Geim研究组与Kim研究组发现,室温下石墨烯具有10倍于商用硅片的高载流子迁移率(约10 am /V·s),并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性(300 K下可达0.3 m),这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的操作响应特性是石墨烯基电子器件的另一显著优势。在现代技术下,石墨烯纳米线可以证明一般能够取代硅作为半导体。[88]
^V. Kohlschütter and P. Haenni. Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure. Z. Anorg. Allg. Chem. 1918, 105 (1): 121–144. doi:10.1002/zaac.19191050109.
^G. Ruess and F. Vogt. Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte für Chemie. 1948, 78 (3-4): 222–242. doi:10.1007/BF01141527.
^ 15.015.115.2Carbon Wonderland. Scientific American. April 2008 [2009-05-05]. (原始内容存档于2010-12-27). .. bits of graphene are undoubtedly present in every pencil mark
^Teo, Guoquan; Wang, Haomin; Wu, Yihong; Guo, Zaibing; Zhang, Jun; Ni, Zhenhua; Shen, Zexiang. Visibility study of graphene multilayer structures. Journal of Applied Physics. 2008, 103 (12): pp. 124302-6. doi:10.1063/1.2938840.引文使用过时参数coauthors (帮助) 引文格式1维护:冗余文本 (link)
^Ferrari, A. C.; J. C. Meyer2, V. Scardaci1, C. Casiraghi1, M. Lazzeri3, F. Mauri3, S. Piscanec1, D. Jiang4, K. S. Novoselov4, S. Roth2, and A. K. Geim. Raman spectrum of graphene and graphene layers. Physics review letters. 2006, 97: pp. 187401–5.引文使用过时参数coauthors (帮助) 引文格式1维护:冗余文本 (link)
^Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano advance online publication. 2010, 5 (8): 574–8. PMID 20562870. doi:10.1038/nnano.2010.132.
^Choucair, M.; Thordarson, P; Stride, JA. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology. 2008, 4 (1): 30–3. PMID 19119279. doi:10.1038/nnano.2008.365.
^Brumfiel, G. Nanotubes cut to ribbons New techniques open up carbon tubes to create ribbons. 2009. doi:10.1038/news.2009.367.|journal=被忽略 (帮助)
^Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov & Hongjie Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature. 2009, 458 (7240): 877. PMID 19370031. doi:10.1038/nature07919.
^Ishigami, Masa; et al. Atomic Structure of Graphene on SiO2. Nano Lett. 2007, 7 (6): 1643–1648. PMID 17497819. doi:10.1021/nl070613a.引文使用过时参数coauthors (帮助)
^ 49.049.149.2Charlier, J.-C.; Eklund, P.C.; Zhu, J. and Ferrari, A.C. Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. from Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Ed. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus. Berlin/Heidelberg: Springer-Verlag. 2008.
^ 50.050.1Semenoff, G. W. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Physical Review Letters. 1984, 53: 5449. doi:10.1103/PhysRevLett.53.2449.
^ 51.051.1Fujita, Mitsutaka; Wakabayashi, Katsunori; Nakada, Kyoko; Kusakabe, Koichi. Peculiar Localized State at Zigzag Graphite Edge. Journal of the Physical Society of Japan. 1996-07-15, 65 (7): 1920–1923. doi:10.1143/JPSJ.65.1920.
^ 52.052.1Nakada, Kyoko; Fujita, Mitsutaka; Dresselhaus, Gene; Dresselhaus, Mildred S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B. 1996-12-15, 54 (24): 17954–17961. doi:10.1103/PhysRevB.54.17954.
^ 53.053.1Chung, H. C.; Chang, C. P.; Lin, C. Y.; Lin, M. F. Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics. 2016, 18 (11): 7573–7616. doi:10.1039/C5CP06533J.
^ 54.054.1Novoselov, K. S.; et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005, 438 (7065): 197–200. PMID 16281030. doi:10.1038/nature04233. 引文格式1维护:显式使用等标签 (link)
^Morozov, S.V.; et al. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008, 100: 016602. doi:10.1103/PhysRevLett.100.016602. 引文格式1维护:显式使用等标签 (link)
^Junfeng Liu, A. R. Wright, Chao Zhang, and Zhongshui Ma. Strong terahertz conductance of graphene nanoribbons under a magnetic field. Appl Phys Lett. 29 July 2008, 93: 041106–041110. doi:10.1063/1.2964093.
^
Tombros, Nikolaos; et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature (PDF)使用|format=需要含有|url= (帮助). 2007, 448 (7153): 571–575. PMID 17632544. doi:10.1038/nature06037.引文使用过时参数coauthors (帮助)
^Cho, Sungjae; Yung-Fu Chen, and Michael S. Fuhrer. Gate-tunable Graphene Spin Valve. Applied Physics Letters. 2007, 91: 123105. doi:10.1063/1.2784934.引文使用过时参数coauthors (帮助)
^Novoselov, K.S.; Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim & A.K. Geim, Room-Temperature Quantum Hall Effect in Graphene(PDF), Science, 2007, 315: 1379引文使用过时参数coauthors (帮助)[永久失效連結]
^Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams, Mark A. Hamon, and Robert C. Haddon. Solution Properties of Graphite and Graphene. J. Am. Chem. Soc. 2006, 128 (24): 7720–7721. PMID 16771469. doi:10.1021/ja060680r.
^Meyer, J.C.; et al. Imaging and Dynamics of Light Atoms and Molecules on Graphene. Nature. 2008, 454: 319. doi:10.1038/nature07094. 引文格式1维护:显式使用等标签 (link)
^Barone, V., Hod, O., and Scuseria, G. E. Electronic Structure and Stability of Semiconducting Graphene Nanoribbons. Nano Lett. 2006, 6 (12): 2748. PMID 17163699. doi:10.1021/nl0617033.
^Han., M.Y., Özyilmaz, B., Zhang, Y., and Kim, P. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett. 2007, 98: 206805. doi:10.1103/PhysRevLett.98.206805.
^Wang, Z. F., Shi, Q. W., Li, Q., Wang, X., Hou, J. G., Zheng, H.; et al. Z-shaped graphene nanoribbon quantum dot device. Applied Physics Letters. 2007, 91: 053109. doi:10.1063/1.2761266. 引文格式1维护:显式使用等标签 (link)
^Shan, G.C.; et al. Nanolaser with a Single-Graphene-Nanoribbon in a Microcavity. Journal of Nanoelectronics and Optoelectronics. 2011, 6: 138-143. doi:10.1166/jno.2011.1148. 引文格式1维护:显式使用等标签 (link)
^Shan, G.C.,Shek, C.H. Modeling an Electrically Driven Graphene-Nanoribbon Laser for Optical Interconnects. IEEE Conference. 2012. doi:10.1109/PGC.2012.6458072.
^Bullis, K. Graphene Transistors. Cambridge: MIT Technology Review, Inc. 2008-01-28 [2008-02-18]. (原始内容存档于2020-04-10).
^Wang, X.; et al. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters. 2007, 8 (1): 323. PMID 18069877. doi:10.1021/nl072838r.引文使用过时参数coauthors (帮助)
^Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol. 2008, 3 (5): 270–4. PMID 18654522. doi:10.1038/nnano.2008.83.
^Wang, Yu; et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters. 2009, 95: 063302. doi:10.1063/1.3204698. 引文格式1维护:显式使用等标签 (link)
^Qizhen Liang; et al. A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials. ACS Nano. 2011, 5 (3): 2392–2401. PMID 21384860. doi:10.1021/nn200181e. 引文格式1维护:显式使用等标签 (link)
^Mohanty, Nihar; Vikas Berry. Graphene-based Single-Bacterium Resolution Biodevice and DNA-Transistor—Interfacing Graphene-Derivatives with Nano and Micro Scale Biocomponents. Nano Letters. 2008, 8: 4469–76. PMID 18983201. doi:10.1021/nl802412n.引文使用过时参数coauthors (帮助)
^Xu, MingSheng; D. Fujita and N. Hanagata. Perspectives and Challenges of Emerging Single-Molecule DNA Sequencing Technologies. Small. 2009, 5 (23): 2638–49. PMID 19904762. doi:10.1002/smll.200900976.引文使用过时参数coauthors (帮助)
^Marco Fiorillo, Andrea F. Verre, Maria Iliut; et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget. 2015. doi:10.18632/oncotarget.3348. 引文格式1维护:显式使用等标签 (link)