椭圆积分
在积分学 中,椭圆积分 最初出现于椭圆 的弧长 有关的问题中。朱利奥·法尼亚诺 和欧拉 是最早的研究者。现代数学将椭圆积分 定义为可以表达为如下形式的任何函数
f
{\displaystyle f\,}
的积分
f
(
x
)
=
∫ ∫ -->
c
x
R
[
t
,
P
(
t
)
]
d
t
{\displaystyle f(x)=\int _{c}^{x}R[t,{\sqrt[{}]{P(t)}}]\ dt\,\!}
其中
R
{\displaystyle R\,}
是其两个参数的有理函数 ,
P
{\displaystyle P\,}
是一个无重根的
3
{\displaystyle 3\,}
或
4
{\displaystyle 4\,}
阶多项式 ,而
c
{\displaystyle c\,}
是一个常数。
通常,椭圆积分不能用基本函数表达。这个一般规则的例外出现在
P
{\displaystyle P\,}
有重根的时候,或者是
R
{\displaystyle R\,}
,
(
x
,
y
)
{\displaystyle \left(x,y\right)\,}
没有
y
{\displaystyle y\,}
的奇数幂时。但是,通过适当的简化公式 ,每个椭圆积分可以变为只涉及有理函数和三个经典形式的积分。(也即,第一,第二,和第三类的椭圆积分)。
除下面给出的形式之外,椭圆积分也可以表达为勒让德形式 和Carlson对称形式 。通过对施瓦茨-克里斯托费尔映射 的研究可以加深对椭圆积分理论的理解。历史上,椭圆函数 是作为椭圆积分的逆函数被发现的,特别是这一个:
F
[
sn
(
z
;
k
)
;
k
]
=
z
{\displaystyle F[{\textrm {sn}}\left(z;k\right);k]=z\,}
其中
sn
{\displaystyle {\textrm {sn}}\,}
是雅可比正弦椭圆函数 。
记法
椭圆积分通常表述为不同变量的函数。这些变量完全等价(它们给出同样的椭圆积分),但是它们看起来很不相同。很多文献使用单一一种标准命名规则。在定义积分之前,先来检视一下这些变量的命名常规:
α α -->
{\displaystyle \alpha }
模角 ;
k
=
sin
-->
α α -->
{\displaystyle k=\sin \alpha }
椭圆模 ;
m
=
k
2
=
sin
2
-->
α α -->
{\displaystyle m=k^{2}=\sin ^{2}\alpha }
参数 ;
上述三种常规完全互相确定。规定其中一个和规定另外一个一样。椭圆积分也依赖于另一个变量,可以有如下几种不同的设定方法:
ϕ ϕ -->
{\displaystyle \phi \,\!}
幅度
x
{\displaystyle x\,}
其中
x
=
sin
-->
ϕ ϕ -->
=
sn
u
{\displaystyle x=\sin \phi ={\textrm {sn}}\;u\,\!}
u
{\displaystyle u\,}
,其中
x
=
sn
u
{\displaystyle x={\textrm {sn}}\;u\,}
而
sn
{\displaystyle {\textrm {sn}}\,}
是雅可比椭圆函数 之一
规定其中一个决定另外两个。这样,它们可以互换地使用。注意
u
{\displaystyle u\,}
也依赖于
m
{\displaystyle m\,}
。其它包含
u
{\displaystyle u\,}
的关系有
cos
-->
ϕ ϕ -->
=
cn
u
{\displaystyle \cos \phi ={\textrm {cn}}\;u\,\!}
和
1
− − -->
m
sin
2
-->
ϕ ϕ -->
=
dn
u
.
{\displaystyle {\sqrt {1-m\sin ^{2}\phi }}={\textrm {dn}}\;u.\,\!}
后者有时称为δ幅度 并写作
Δ Δ -->
(
ϕ ϕ -->
)
=
dn
u
{\displaystyle \Delta (\phi )={\textrm {dn}}\;u\,\!}
。有时文献也称之为补参数,补模或者补模角。这些在四分周期 中有进一步的定义。
第一类不完全椭圆积分
第一类不完全椭圆积分
F
{\displaystyle F\,}
定义为
F
(
ϕ ϕ -->
∖ ∖ -->
α α -->
)
=
F
(
ϕ ϕ -->
|
m
)
=
∫ ∫ -->
0
ϕ ϕ -->
d
θ θ -->
1
− − -->
(
sin
-->
θ θ -->
sin
-->
α α -->
)
2
.
{\displaystyle F(\phi \setminus \alpha )=F(\phi |m)=\int _{0}^{\phi }{\frac {{\rm {d}}\theta }{\sqrt {1-(\sin \theta \sin \alpha )^{2}}}}.\,\!}
与此等价,用雅可比 的形式,可以设
x
=
sin
-->
ϕ ϕ -->
,
t
=
sin
-->
θ θ -->
{\displaystyle x=\sin \phi ~,~t=\sin \theta \;\!}
;则
F
(
ϕ ϕ -->
∖ ∖ -->
α α -->
)
=
F
(
x
;
k
)
=
∫ ∫ -->
0
x
d
t
(
1
− − -->
t
2
)
(
1
− − -->
k
2
t
2
)
{\displaystyle F(\phi \setminus \alpha )=F(x;k)=\int _{0}^{x}{\frac {{\rm {d}}t}{\sqrt {(1-t^{2})(1-k^{2}t^{2})}}}\,\!}
其中,假定任何有竖直条出现的地方,紧跟竖直条的变量是(如上定义的)参数;而且,当反斜杠出现的时候,跟着出现的是模角。
在这个意义下,
F
(
sin
-->
ϕ ϕ -->
;
sin
-->
α α -->
)
=
F
(
ϕ ϕ -->
|
sin
2
-->
α α -->
)
=
F
(
ϕ ϕ -->
∖ ∖ -->
α α -->
)
{\displaystyle F(\sin \phi ;\sin \alpha )=F(\phi |\sin ^{2}\alpha )=F(\phi \setminus \alpha )~\,\!}
,这里的记法来自标准参考书Abramowitz and Stegun 。
但是,还有许多不同的用于椭圆积分的记法。取值为椭圆积分的函数没有(像平方根 ,正弦 和误差函数 那样的)标准和唯一的名字。甚至关于该领域的文献也常常采用不同的记法。Gradstein, Ryzhik[1] (页面存档备份 ,存于互联网档案馆 ),
E
q
{\displaystyle Eq\,}
.(8.111)]采用
F
(
ϕ ϕ -->
,
k
)
{\displaystyle F(\phi ,k)\,\!}
。该记法和这里的
F
(
ϕ ϕ -->
|
k
2
)
{\displaystyle F(\phi |k^{2})~\,\!}
;以及下面的
E
(
ϕ ϕ -->
,
k
)
=
E
(
ϕ ϕ -->
|
k
2
)
{\displaystyle E(\phi ,k)=E(\phi |k^{2})~\,\!}
等价。
和上面的不同对应的是,如果从Mathematica 语言翻译代码到Maple 语言,必须将EllipticK函数的参数用它的平方根 代替。反过来,如果从Maple翻到Mathematica,则参数应该用它的平方 代替。Maple中的EllipticK(
x
{\displaystyle x}
)几乎和Mathematica中的EllipticK[
x
2
{\displaystyle x^{2}}
]相等;至少当
0
<
x
<
1
{\displaystyle 0<x<1\,}
时是相等的。
注意
F
(
x
;
k
)
=
u
{\displaystyle F(x;k)=u\,\!}
其中
u
{\displaystyle u\,}
如上文所定义:由此可见,雅可比椭圆函数 是椭圆积分的逆。
加法公式
∀ ∀ -->
φ φ -->
1
,
φ φ -->
2
∈ ∈ -->
]
− − -->
π π -->
2
;
π π -->
2
[
,
{\displaystyle \forall \varphi _{1},\varphi _{2}\in \left]-{\frac {\pi }{2}};{\frac {\pi }{2}}\right[,}
F
(
φ φ -->
1
,
k
)
+
F
(
φ φ -->
2
,
k
)
=
F
(
arctan
-->
(
tan
-->
φ φ -->
1
1
− − -->
k
2
sin
2
-->
φ φ -->
2
)
+
arctan
-->
(
tan
-->
φ φ -->
2
1
− − -->
k
2
sin
2
-->
φ φ -->
1
)
,
k
)
{\displaystyle F\left(\varphi _{1},k\right)+F\left(\varphi _{2},k\right)=F\left(\arctan \left(\tan \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\right)+\arctan \left(\tan \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\right),k\right)}
arctan
-->
(
tan
-->
φ φ -->
1
1
− − -->
k
2
sin
2
-->
φ φ -->
2
)
+
arctan
-->
(
tan
-->
φ φ -->
2
1
− − -->
k
2
sin
2
-->
φ φ -->
1
)
∈ ∈ -->
[
− − -->
π π -->
/
2
;
π π -->
/
2
]
⇒ ⇒ -->
{\displaystyle \arctan \left(\tan \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\right)+\arctan \left(\tan \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\right)\in [-\pi /2;\pi /2]\Rightarrow }
F
(
φ φ -->
1
,
k
)
+
F
(
φ φ -->
2
,
k
)
=
F
(
arcsin
-->
cos
-->
φ φ -->
1
1
− − -->
k
2
sin
2
-->
φ φ -->
1
sin
-->
φ φ -->
2
+
cos
-->
φ φ -->
2
1
− − -->
k
2
sin
2
-->
φ φ -->
2
sin
-->
φ φ -->
1
1
− − -->
k
2
sin
2
-->
φ φ -->
1
sin
2
-->
φ φ -->
2
,
k
)
{\displaystyle F\left(\varphi _{1},k\right)+F\left(\varphi _{2},k\right)=F\left(\arcsin {\frac {\cos \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\sin \varphi _{2}+\cos \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\sin \varphi _{1}}{1-k^{2}\sin ^{2}\varphi _{1}\sin ^{2}\varphi _{2}}},k\right)}
arctan
-->
(
tan
-->
φ φ -->
1
1
− − -->
k
2
sin
2
-->
φ φ -->
2
)
+
arctan
-->
(
tan
-->
φ φ -->
2
1
− − -->
k
2
sin
2
-->
φ φ -->
1
)
∈ ∈ -->
[
0
;
π π -->
]
⇒ ⇒ -->
{\displaystyle \arctan \left(\tan \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\right)+\arctan \left(\tan \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\right)\in [0;\pi ]\Rightarrow }
F
(
φ φ -->
1
,
k
)
+
F
(
φ φ -->
2
,
k
)
=
F
(
arccos
-->
cos
-->
φ φ -->
1
cos
-->
φ φ -->
2
− − -->
sin
-->
φ φ -->
1
sin
-->
φ φ -->
2
1
− − -->
k
2
sin
2
-->
φ φ -->
1
1
− − -->
k
2
sin
2
-->
φ φ -->
1
1
− − -->
k
2
sin
2
-->
φ φ -->
2
1
− − -->
k
2
sin
2
-->
φ φ -->
1
sin
2
-->
φ φ -->
2
,
k
)
{\displaystyle F\left(\varphi _{1},k\right)+F\left(\varphi _{2},k\right)=F\left(\arccos {\frac {\cos \varphi _{1}\cos \varphi _{2}-\sin \varphi _{1}\sin \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}}{1-k^{2}\sin ^{2}\varphi _{1}\sin ^{2}\varphi _{2}}},k\right)}
性质
F
(
x
+
n
π π -->
;
k
)
=
F
(
x
;
k
)
+
2
n
K
(
k
)
{\displaystyle F(x+n\pi ;k)=F(x;k)+2nK(k)\,\!}
F
(
x
+
n
π π -->
2
;
k
)
=
n
K
(
k
)
{\displaystyle F(x+{\frac {n\pi }{2}};k)=nK(k)\,\!}
n
∈ ∈ -->
Z
{\displaystyle n\in \mathbb {Z} \,\!}
F
(
− − -->
x
;
k
)
=
− − -->
F
(
x
;
k
)
{\displaystyle F(-x;k)=-F(x;k)\,\!}
F
(
x
;
0
)
=
x
{\displaystyle F(x;0)=x\,\!}
F
(
0
;
k
)
=
− − -->
F
(
x
;
k
)
{\displaystyle F(0;k)=-F(x;k)\,\!}
F
(
x
;
1
)
=
a
r
c
t
a
n
h
sin
-->
x
{\displaystyle F(x;1)={\rm {arctanh}}\sin x\,\!}
− − -->
π π -->
2
<
ℜ ℜ -->
(
x
)
<
π π -->
2
{\displaystyle -{\frac {\pi }{2}}<\Re (x)<{\frac {\pi }{2}}\,\!}
第一类不完全椭圆积分的导数
d
d
x
F
(
x
;
k
)
=
1
1
− − -->
k
2
sin
2
-->
x
{\displaystyle {\frac {\rm {d}}{{\rm {d}}x}}F(x;k)={\frac {1}{\sqrt {1-k^{2}\sin ^{2}x}}}\,\!}
d
d
k
F
(
x
;
k
)
=
E
(
x
;
k
)
2
k
(
1
− − -->
k
)
− − -->
F
(
x
;
k
)
2
k
− − -->
sin
-->
2
x
4
(
1
− − -->
k
)
1
− − -->
k
sin
2
-->
x
{\displaystyle {\frac {\rm {d}}{{\rm {d}}k}}F(x;k)={\frac {E(x;k)}{2k(1-k)}}-{\frac {F(x;k)}{2k}}-{\frac {\sin 2x}{4(1-k){\sqrt {1-k\sin ^{2}x}}}}\,\!}
第二类不完全椭圆积分
第二类不完全椭圆积分
E
{\displaystyle E\!}
是
E
(
ϕ ϕ -->
∖ ∖ -->
α α -->
)
=
E
(
ϕ ϕ -->
|
m
)
=
∫ ∫ -->
0
ϕ ϕ -->
E
′
(
θ θ -->
)
d
θ θ -->
=
∫ ∫ -->
0
ϕ ϕ -->
1
− − -->
(
sin
-->
θ θ -->
sin
-->
α α -->
)
2
d
θ θ -->
.
{\displaystyle E(\phi \setminus \alpha )=E(\phi |m)=\int _{0}^{\phi }\!E'(\theta )\ {\rm {d}}\theta =\int _{0}^{\phi }{\sqrt {1-(\sin \theta \sin \alpha )^{2}}}\ {\rm {d}}\theta .\,\!}
与此等价,采用另外一个记法(作变量替换
t
=
sin
-->
θ θ -->
{\displaystyle t=\sin \theta \,\!}
),
E
(
x
;
k
)
=
∫ ∫ -->
0
x
1
− − -->
k
2
t
2
1
− − -->
t
2
d
t
.
{\displaystyle E(x;k)=\int _{0}^{x}{\frac {\sqrt {1-k^{2}t^{2}}}{\sqrt {1-t^{2}}}}\ {\rm {d}}t.\,\!}
其它关系包括
E
(
ϕ ϕ -->
|
m
)
=
∫ ∫ -->
0
u
dn
2
w
d
w
=
u
− − -->
m
∫ ∫ -->
0
u
sn
2
w
d
w
=
(
1
− − -->
m
)
u
+
m
∫ ∫ -->
0
u
cn
2
w
d
w
.
{\displaystyle E(\phi |m)=\int _{0}^{u}{\textrm {dn}}^{2}w\;{\rm {d}}w=u-m\int _{0}^{u}{\textrm {sn}}^{2}w\;{\rm {d}}w=(1-m)u+m\int _{0}^{u}{\textrm {cn}}^{2}w\;{\rm {d}}w.\,\!}
E
(
ϕ ϕ -->
|
k
2
)
=
(
1
− − -->
k
2
)
∫ ∫ -->
0
ϕ ϕ -->
d
θ θ -->
(
1
− − -->
k
2
sin
2
-->
θ θ -->
)
1
− − -->
k
2
sin
2
-->
θ θ -->
+
k
2
sin
-->
θ θ -->
cos
-->
θ θ -->
1
− − -->
k
2
sin
2
-->
θ θ -->
{\displaystyle E(\phi |k^{2})=(1-k^{2})\int _{0}^{\phi }{\frac {{\rm {d}}\theta }{(1-k^{2}\sin ^{2}\theta ){\sqrt {1-k^{2}\sin ^{2}\theta }}}}+{\frac {k^{2}\sin \theta \cos \theta }{\sqrt {1-k^{2}\sin ^{2}\theta }}}\,\!}
加法公式
∀ ∀ -->
φ φ -->
1
,
φ φ -->
2
∈ ∈ -->
]
− − -->
π π -->
2
;
π π -->
2
[
,
{\displaystyle \forall \varphi _{1},\varphi _{2}\in \left]-{\frac {\pi }{2}};{\frac {\pi }{2}}\right[,}
E
(
φ φ -->
1
,
k
)
+
E
(
φ φ -->
2
,
k
)
=
[
E
(
arctan
-->
(
tan
-->
φ φ -->
1
1
− − -->
k
2
sin
2
-->
φ φ -->
2
)
+
arctan
-->
(
tan
-->
φ φ -->
2
1
− − -->
k
2
sin
2
-->
φ φ -->
1
)
,
k
)
+
k
2
sin
-->
φ φ -->
1
sin
-->
φ φ -->
2
(
cos
-->
φ φ -->
1
1
− − -->
k
2
sin
2
-->
φ φ -->
1
sin
-->
φ φ -->
2
+
cos
-->
φ φ -->
2
1
− − -->
k
2
sin
2
-->
φ φ -->
2
sin
-->
φ φ -->
1
)
1
− − -->
k
2
sin
-->
φ φ -->
1
sin
-->
φ φ -->
2
]
{\displaystyle \textstyle E\left(\varphi _{1},k\right)+E\left(\varphi _{2},k\right)=\left[{\begin{aligned}E\left(\arctan \left(\tan \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\right)+\arctan \left(\tan \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\right),k\right)\\+{\frac {k^{2}\sin \varphi _{1}\sin \varphi _{2}\left(\cos \varphi _{1}{\sqrt {1-k^{2}\sin ^{2}\varphi _{1}}}\sin \varphi _{2}+\cos \varphi _{2}{\sqrt {1-k^{2}\sin ^{2}\varphi _{2}}}\sin \varphi _{1}\right)}{1-k^{2}\sin \varphi _{1}\sin \varphi _{2}}}\end{aligned}}\right]}
性质
E
(
ϕ ϕ -->
+
n
π π -->
;
k
)
=
E
(
ϕ ϕ -->
;
k
)
+
2
n
E
(
k
)
{\displaystyle E(\phi +n\pi ;k)=E(\phi ;k)+2nE(k)\,\!}
E
(
− − -->
ϕ ϕ -->
;
k
)
=
− − -->
E
(
ϕ ϕ -->
;
k
)
{\displaystyle E(-\phi ;k)=-E(\phi ;k)\,\!}
第二类不完全椭圆积分的导数
d
d
ϕ ϕ -->
E
(
ϕ ϕ -->
;
k
)
=
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
{\displaystyle {\frac {\rm {d}}{{\rm {d}}\phi }}E(\phi ;k)={\sqrt {1-k^{2}\sin ^{2}\phi }}\,\!}
d
d
k
E
(
ϕ ϕ -->
;
k
)
=
E
(
ϕ ϕ -->
;
k
)
− − -->
F
(
ϕ ϕ -->
;
k
)
2
k
{\displaystyle {\frac {\rm {d}}{{\rm {d}}k}}E(\phi ;k)={\frac {E(\phi ;k)-F(\phi ;k)}{2k}}\,\!}
d
n
d
k
n
E
(
ϕ ϕ -->
;
k
)
=
π π -->
2
k
n
2
F
1
(
− − -->
1
2
,
1
2
;
1
− − -->
n
;
k
)
− − -->
π π -->
cos
-->
ϕ ϕ -->
2
k
2
n
F
2
× × -->
1
× × -->
0
1
× × -->
3
× × -->
2
[
1
2
;
− − -->
1
2
,
1
2
,
1
;
1
2
,
1
;
1
,
3
2
;
1
− − -->
n
;
;
− − -->
k
2
cos
-->
ϕ ϕ -->
,
cos
2
-->
ϕ ϕ -->
]
+
π π -->
m
1
− − -->
n
cos
-->
ϕ ϕ -->
8
F
3
× × -->
1
× × -->
1
2
× × -->
1
× × -->
1
[
1
2
,
3
2
,
2
;
1
2
,
1
;
2
,
2
− − -->
n
;
1
− − -->
n
;
3
2
;
3
2
;
− − -->
k
2
cos
2
-->
ϕ ϕ -->
,
k
2
]
{\displaystyle {\frac {{\rm {d}}^{n}}{{\rm {d}}k^{n}}}E(\phi ;k)={\frac {\pi }{2k^{n}}}{}_{2}F_{1}\left(-{\frac {1}{2}},{\frac {1}{2}};1-n;k\right)-{\frac {{\sqrt {\pi }}\cos \phi }{2k^{2n}}}F_{2\times 1\times 0}^{1\times 3\times 2}{\begin{bmatrix}{\frac {1}{2}};-{\frac {1}{2}},{\frac {1}{2}},1;{\frac {1}{2}},1;\\1,{\frac {3}{2}};1-n;;\\-k^{2}\cos \phi ,\cos ^{2}\phi \end{bmatrix}}+{\frac {\pi m^{1-n}\cos \phi }{8}}F_{3\times 1\times 1}^{2\times 1\times 1}{\begin{bmatrix}{\frac {1}{2}},{\frac {3}{2}},2;{\frac {1}{2}},1;\\2,2-n;1-n;{\frac {3}{2}};{\frac {3}{2}};\\-k^{2}\cos ^{2}\phi ,k^{2}\end{bmatrix}}\,\!}
第三类不完全椭圆积分
第三类不完全椭圆积分
Π Π -->
{\displaystyle \Pi \,\!}
是
Π Π -->
(
n
;
ϕ ϕ -->
|
m
)
=
∫ ∫ -->
0
ϕ ϕ -->
d
θ θ -->
(
1
− − -->
n
sin
2
-->
θ θ -->
)
1
− − -->
(
sin
-->
θ θ -->
sin
-->
o
ε ε -->
)
2
,
{\displaystyle \Pi (n;\phi |m)=\int _{0}^{\phi }{\frac {{\rm {d}}\theta }{(1-n\sin ^{2}\theta ){\sqrt {1-(\sin \theta \sin o\!\varepsilon )^{2}}}}},\,\!}
或者
Π Π -->
(
n
;
ϕ ϕ -->
|
m
)
=
∫ ∫ -->
0
sin
-->
ϕ ϕ -->
d
t
(
1
− − -->
n
t
2
)
(
1
− − -->
k
2
t
2
)
(
1
− − -->
t
2
)
,
{\displaystyle \Pi (n;\phi |m)=\int _{0}^{\sin \phi }{\frac {{\rm {d}}t}{(1-nt^{2}){\sqrt {(1-k^{2}t^{2})(1-t^{2})}}}},\,\!}
或者
Π Π -->
(
n
;
ϕ ϕ -->
|
m
)
=
∫ ∫ -->
0
F
(
ϕ ϕ -->
|
m
)
d
w
1
− − -->
n
sn
2
(
w
|
m
)
.
{\displaystyle \Pi (n;\phi |m)=\int _{0}^{F(\phi |m)}{\frac {{\rm {d}}w}{1-n{\textrm {sn}}^{2}(w|m)}}.\;\,\!}
数字
n
{\displaystyle n\,}
称为特征数 ,可以取任意值,和其它参数独立。但是要注意
Π Π -->
(
1
;
π π -->
2
|
m
)
{\displaystyle \Pi (1;{\frac {\pi }{2}}|m)\,\!}
对于任意
m
{\displaystyle m\,\!}
是无穷的。
加法公式
Π Π -->
(
n
;
ϕ ϕ -->
1
,
k
)
+
Π Π -->
(
n
;
ϕ ϕ -->
2
,
k
)
=
Π Π -->
[
n
;
arccos
-->
cos
-->
ϕ ϕ -->
1
cos
-->
ϕ ϕ -->
2
− − -->
sin
-->
ϕ ϕ -->
1
sin
-->
ϕ ϕ -->
2
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
)
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
2
)
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
sin
2
-->
ϕ ϕ -->
2
,
k
]
− − -->
n
(
1
− − -->
n
)
(
n
− − -->
k
2
)
arctan
-->
(
1
− − -->
n
)
n
(
n
− − -->
k
2
)
sin
-->
arccos
-->
cos
-->
ϕ ϕ -->
1
cos
-->
ϕ ϕ -->
2
− − -->
sin
-->
ϕ ϕ -->
1
sin
-->
ϕ ϕ -->
2
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
)
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
2
)
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
sin
2
-->
ϕ ϕ -->
2
sin
-->
ϕ ϕ -->
1
sin
-->
ϕ ϕ -->
2
n
cos
-->
ϕ ϕ -->
1
cos
-->
ϕ ϕ -->
2
− − -->
n
sin
-->
ϕ ϕ -->
1
sin
-->
ϕ ϕ -->
2
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
)
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
2
)
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
sin
2
-->
ϕ ϕ -->
2
1
− − -->
k
2
sin
2
-->
arccos
-->
cos
-->
ϕ ϕ -->
1
cos
-->
ϕ ϕ -->
2
− − -->
sin
-->
ϕ ϕ -->
1
sin
-->
ϕ ϕ -->
2
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
)
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
2
)
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
sin
2
-->
ϕ ϕ -->
2
sin
-->
ϕ ϕ -->
1
sin
-->
ϕ ϕ -->
2
+
1
− − -->
n
sin
2
-->
arccos
-->
cos
-->
ϕ ϕ -->
1
cos
-->
ϕ ϕ -->
2
− − -->
sin
-->
ϕ ϕ -->
1
sin
-->
ϕ ϕ -->
2
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
)
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
2
)
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
1
sin
2
-->
ϕ ϕ -->
2
{\displaystyle \Pi (n;\phi _{1},k)+\Pi (n;\phi _{2},k)=\Pi \left[n;\arccos {\frac {\cos \phi _{1}\cos \phi _{2}-\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}},k\right]-{\sqrt {\frac {n}{(1-n)(n-k^{2})}}}\arctan {\frac {{\sqrt {(1-n)n(n-k^{2})}}\sin \arccos {\frac {\cos \phi _{1}\cos \phi _{2}-\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}}\sin \phi _{1}\sin \phi _{2}}{{\frac {n\cos \phi _{1}\cos \phi _{2}-n\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}}{\sqrt {1-k^{2}\sin ^{2}\arccos {\frac {\cos \phi _{1}\cos \phi _{2}-\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}}}}\sin \phi _{1}\sin \phi _{2}+1-n\sin ^{2}\arccos {\frac {\cos \phi _{1}\cos \phi _{2}-\sin \phi _{1}\sin \phi _{2}{\sqrt {(1-k^{2}\sin ^{2}\phi _{1})(1-k^{2}\sin ^{2}\phi _{2})}}}{1-k^{2}\sin ^{2}\phi _{1}\sin ^{2}\phi _{2}}}}}}
第三类不完全椭圆积分的导数
∂ ∂ -->
∂ ∂ -->
n
Π Π -->
(
n
;
ϕ ϕ -->
,
k
)
=
1
2
(
k
2
− − -->
n
)
(
n
− − -->
1
)
[
E
(
ϕ ϕ -->
;
k
)
+
(
k
2
− − -->
n
)
F
(
ϕ ϕ -->
;
k
)
n
+
(
n
2
− − -->
k
2
)
Π Π -->
(
n
;
ϕ ϕ -->
,
k
)
n
− − -->
n
1
− − -->
k
2
sin
-->
ϕ ϕ -->
sin
-->
2
ϕ ϕ -->
2
(
1
− − -->
n
sin
2
-->
ϕ ϕ -->
)
]
{\displaystyle {\frac {\partial }{\partial n}}\Pi (n;\phi ,k)={\frac {1}{2(k^{2}-n)(n-1)}}\left[E(\phi ;k)+{\frac {(k^{2}-n)F(\phi ;k)}{n}}+{\frac {(n^{2}-k^{2})\Pi (n;\phi ,k)}{n}}-{\frac {n{\sqrt {1-k^{2}\sin \phi }}\sin 2\phi }{2(1-n\sin ^{2}\phi )}}\right]}
∂ ∂ -->
m
∂ ∂ -->
n
m
Π Π -->
(
n
;
ϕ ϕ -->
,
k
)
=
sin
-->
ϕ ϕ -->
n
m
∑ ∑ -->
q
=
0
∞ ∞ -->
q
!
(
n
sin
2
-->
ϕ ϕ -->
)
q
(
2
q
+
1
)
Γ Γ -->
(
q
− − -->
m
+
1
)
F
1
(
q
+
1
2
,
1
2
,
1
2
;
q
+
3
2
;
sin
2
-->
ϕ ϕ -->
,
k
2
sin
2
-->
ϕ ϕ -->
)
{\displaystyle {\frac {{\partial }^{m}}{\partial n^{m}}}\Pi (n;\phi ,k)={\frac {\sin \phi }{n^{m}}}\sum _{q=0}^{\infty }{\frac {q!(n\sin ^{2}\phi )^{q}}{(2q+1)\Gamma (q-m+1)}}F_{1}\left(q+{\frac {1}{2}},{\frac {1}{2}},{\frac {1}{2}};q+{\frac {3}{2}};\sin ^{2}\phi ,k^{2}\sin ^{2}\phi \right)}
∂ ∂ -->
∂ ∂ -->
ϕ ϕ -->
Π Π -->
(
n
;
ϕ ϕ -->
,
k
)
=
1
(
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
)
{\displaystyle {\frac {\partial }{\partial \phi }}\Pi (n;\phi ,k)={\frac {1}{(1-k^{2}\sin ^{2}\phi )}}\!}
∂ ∂ -->
∂ ∂ -->
k
Π Π -->
(
n
;
ϕ ϕ -->
,
k
)
=
k
n
− − -->
k
2
[
E
(
ϕ ϕ -->
;
k
)
k
2
− − -->
1
+
Π Π -->
(
n
;
ϕ ϕ -->
,
k
)
− − -->
k
2
sin
-->
2
ϕ ϕ -->
2
(
k
2
− − -->
1
)
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
]
{\displaystyle {\frac {\partial }{\partial k}}\Pi (n;\phi ,k)={\frac {k}{n-k^{2}}}\left[{\frac {E(\phi ;k)}{k^{2}-1}}+\Pi (n;\phi ,k)-{\frac {k^{2}\sin 2\phi }{2(k^{2}-1){\sqrt {1-k^{2}\sin ^{2}\phi }}}}\right]\!}
特殊值
Π Π -->
(
n
;
ϕ ϕ -->
,
1
)
=
1
2
n
− − -->
2
[
n
ln
-->
1
+
n
sin
-->
ϕ ϕ -->
1
− − -->
n
sin
-->
ϕ ϕ -->
− − -->
2
ln
-->
(
sec
-->
ϕ ϕ -->
+
tan
-->
ϕ ϕ -->
)
]
{\displaystyle \Pi (n;\phi ,1)={\frac {1}{2n-2}}\left[{\sqrt {n}}\ln {\frac {1+{\sqrt {n}}\sin \phi }{1-{\sqrt {n}}\sin \phi }}-2\ln(\sec \phi +\tan \phi )\right]\!}
− − -->
π π -->
2
≤ ≤ -->
ℜ ℜ -->
(
ϕ ϕ -->
)
≤ ≤ -->
π π -->
2
{\displaystyle -{\frac {\pi }{2}}\leq \Re (\phi )\leq {\frac {\pi }{2}}\!}
Π Π -->
(
0
;
ϕ ϕ -->
,
k
)
=
F
(
ϕ ϕ -->
,
k
)
{\displaystyle \Pi (0;\phi ,k)=F(\phi ,k)\!}
Π Π -->
(
n
;
ϕ ϕ -->
,
0
)
=
a
r
c
t
a
n
h
(
n
− − -->
1
tan
-->
ϕ ϕ -->
)
n
− − -->
1
{\displaystyle \Pi (n;\phi ,0)={\frac {{\rm {arctanh}}({\sqrt {n-1}}\tan \phi )}{\sqrt {n-1}}}\!}
− − -->
π π -->
2
≤ ≤ -->
ℜ ℜ -->
(
ϕ ϕ -->
)
≤ ≤ -->
π π -->
2
{\displaystyle -{\frac {\pi }{2}}\leq \Re (\phi )\leq {\frac {\pi }{2}}\!}
Π Π -->
(
n
;
ϕ ϕ -->
,
n
)
=
1
1
− − -->
n
[
E
(
ϕ ϕ -->
,
n
)
− − -->
n
sin
-->
2
ϕ ϕ -->
2
1
− − -->
n
sin
2
-->
ϕ ϕ -->
]
{\displaystyle \Pi (n;\phi ,{\sqrt {n}})={\frac {1}{1-n}}\left[E(\phi ,{\sqrt {n}})-{\frac {n\sin 2\phi }{2{\sqrt {1-n\sin ^{2}\phi }}}}\right]\!}
Π Π -->
(
n
;
1
k
,
k
)
=
1
k
Π Π -->
(
n
k
2
,
1
k
)
{\displaystyle \Pi \left(n;{\frac {1}{k}},k\right)={\frac {1}{k}}\Pi \left({\frac {n}{k^{2}}},{\frac {1}{k}}\right)\!}
Π Π -->
(
1
;
ϕ ϕ -->
,
k
)
=
1
− − -->
k
2
sin
2
-->
ϕ ϕ -->
tan
-->
ϕ ϕ -->
− − -->
E
(
ϕ ϕ -->
,
k
)
1
− − -->
k
2
+
F
(
ϕ ϕ -->
,
k
)
{\displaystyle \Pi \left(1;\phi ,k\right)={\frac {{\sqrt {1-k^{2}\sin ^{2}\phi }}\tan \phi -E(\phi ,k)}{1-k^{2}}}+F(\phi ,k)\!}
第一类完全椭圆积分
第一类完全椭圆积分
K
(
k
)
{\displaystyle K(k)}
如果幅度为
π π -->
2
{\displaystyle {\frac {\pi }{2}}\,}
或者
x
=
1
{\displaystyle x=1\,}
,则称椭圆积分为完全 的。
第一类完全椭圆积分
K
{\displaystyle K\,}
可以定義为
K
(
k
)
=
∫ ∫ -->
0
π π -->
2
d
θ θ -->
1
− − -->
k
2
sin
2
-->
θ θ -->
{\displaystyle K(k)=\int _{0}^{\frac {\pi }{2}}{\frac {{\rm {d}}\theta }{\sqrt {1-k^{2}\sin ^{2}\theta }}}}
或者
K
(
k
)
=
∫ ∫ -->
0
1
d
t
(
1
− − -->
t
2
)
(
1
− − -->
k
2
t
2
)
.
{\displaystyle K(k)=\int _{0}^{1}{\frac {{\rm {d}}t}{\sqrt {(1-t^{2})(1-k^{2}t^{2})}}}.\!}
它是第一类不完全椭圆积分的特例:
K
(
k
)
=
F
(
1
;
k
)
=
F
(
π π -->
2
|
k
2
)
{\displaystyle K(k)=F(1;\,k)=F\left({\frac {\pi }{2}}\,|\,k^{2}\right)\!}
这个特例可以表达为幂级数
K
(
k
)
=
π π -->
2
∑ ∑ -->
n
=
0
∞ ∞ -->
[
(
2
n
)
!
2
2
n
n
!
2
]
2
k
2
n
{\displaystyle K(k)={\frac {\pi }{2}}\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}n!^{2}}}\right]^{2}k^{2n}\!}
它等价于
K
(
k
)
=
π π -->
2
{
1
+
(
1
2
)
2
k
2
+
(
1
⋅ ⋅ -->
3
2
⋅ ⋅ -->
4
)
2
k
4
+
⋯ ⋯ -->
+
[
(
2
n
− − -->
1
)
!
!
(
2
n
)
!
!
]
2
k
2
n
+
⋯ ⋯ -->
}
.
{\displaystyle K(k)={\frac {\pi }{2}}\left\{1+\left({\frac {1}{2}}\right)^{2}k^{2}+\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}k^{4}+\cdots +\left[{\frac {(2n-1)!!}{(2n)!!}}\right]^{2}k^{2n}+\cdots \right\}.\!}
其中
n
!
!
{\displaystyle n!!\,}
表示双阶乘 。利用高斯的超几何函数 ,第一类完全椭圆积分可以表达为
K
(
k
)
=
π π -->
2
2
F
1
(
1
2
,
1
2
;
1
;
k
2
)
.
{\displaystyle K(k)={\frac {\pi }{2}}\,_{2}F_{1}\left({\frac {1}{2}},{\frac {1}{2}};1;k^{2}\right).\,\!}
第一类完全椭圆积分有时称为四分周期 。它可以利用算术几何平均值 來快速计算。
K
(
k
)
=
π π -->
2
a
g
m
(
1
,
1
− − -->
k
2
)
.
{\displaystyle K(k)={\frac {\frac {\pi }{2}}{\mathrm {agm} (1,{\sqrt {1-k^{2}}})}}.}
复数值
ℜ ℜ -->
[
K
(
x
+
y
i
)
]
=
π π -->
2
F
2
× × -->
1
× × -->
1
4
× × -->
0
× × -->
0
[
3
4
,
3
4
,
5
4
,
5
4
,
;
;
;
1
,
3
2
;
1
2
;
3
2
;
− − -->
y
2
,
x
2
]
+
π π -->
8
x
F
2
× × -->
1
× × -->
1
4
× × -->
0
× × -->
0
[
1
4
,
1
4
,
3
4
,
3
4
,
;
;
;
1
,
1
2
;
1
2
;
1
2
;
− − -->
y
2
,
x
2
]
{\displaystyle \Re \left[K(x+y{\rm {i}})\right]={\frac {\pi }{2}}F_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {3}{4}},{\frac {3}{4}},{\frac {5}{4}},{\frac {5}{4}},;;;\\1,{\frac {3}{2}};{\frac {1}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}+{\frac {\pi }{8}}xF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {1}{4}},{\frac {1}{4}},{\frac {3}{4}},{\frac {3}{4}},;;;\\1,{\frac {1}{2}};{\frac {1}{2}};{\frac {1}{2}};\\-y^{2},x^{2}\end{bmatrix}}\,\!}
ℑ ℑ -->
[
K
(
x
+
y
i
)
]
=
π π -->
8
y
F
2
× × -->
1
× × -->
1
4
× × -->
0
× × -->
0
[
3
4
,
5
4
,
3
4
,
5
4
,
;
;
;
1
,
3
2
;
3
2
;
1
2
;
− − -->
y
2
,
x
2
]
+
9
64
π π -->
x
y
F
2
× × -->
1
× × -->
1
4
× × -->
0
× × -->
0
[
5
4
,
7
4
,
7
4
,
5
4
,
;
;
;
2
,
3
2
;
3
2
;
3
2
;
− − -->
y
2
,
x
2
]
{\displaystyle \Im \left[K(x+y{\rm {i}})\right]={\frac {\pi }{8}}yF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {3}{4}},{\frac {5}{4}},{\frac {3}{4}},{\frac {5}{4}},;;;\\1,{\frac {3}{2}};{\frac {3}{2}};{\frac {1}{2}};\\-y^{2},x^{2}\end{bmatrix}}+{\frac {9}{64}}\pi xyF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {5}{4}},{\frac {7}{4}},{\frac {7}{4}},{\frac {5}{4}},;;;\\2,{\frac {3}{2}};{\frac {3}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}\,\!}
特殊值
K
(
± ± -->
∞ ∞ -->
)
=
0
{\displaystyle K(\pm \infty )=0\,}
K
(
± ± -->
i
∞ ∞ -->
)
=
0
{\displaystyle K(\pm {\rm {i}}\infty )=0\,}
K
(
0
)
=
π π -->
2
{\displaystyle K(0)={\frac {\pi }{2}}\!}
K
(
1
)
=
∞ ∞ -->
{\displaystyle K(1)=\infty \!}
K
(
2
2
)
=
8
π π -->
Γ Γ -->
2
(
− − -->
1
4
)
π π -->
{\displaystyle K({\frac {\sqrt {2}}{2}})={\frac {8\pi }{\Gamma ^{2}\left(-{\frac {1}{4}}\right)}}{\sqrt {\pi }}\,}
K
(
17
− − -->
12
2
)
=
(
4
+
2
2
)
π π -->
Γ Γ -->
2
(
− − -->
1
4
)
π π -->
{\displaystyle K\left({\sqrt {17-12{\sqrt {2}}}}\right)={\frac {(4+2{\sqrt {2}})\pi }{\Gamma ^{2}\left(-{\frac {1}{4}}\right)}}{\sqrt {\pi }}\,}
K
(
6
− − -->
2
4
)
=
4
3
⋅ ⋅ -->
3
4
8
π π -->
Γ Γ -->
3
(
1
3
)
{\displaystyle K\left({\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}\right)={\frac {{\sqrt[{3}]{4}}\cdot {\sqrt[{4}]{3}}}{8\pi }}\Gamma ^{3}\left({\frac {1}{3}}\right)\,}
K
(
6
+
2
4
)
=
4
3
⋅ ⋅ -->
27
4
8
π π -->
Γ Γ -->
3
(
1
3
)
{\displaystyle K\left({\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}\right)={\frac {{\sqrt[{3}]{4}}\cdot {\sqrt[{4}]{27}}}{8\pi }}\Gamma ^{3}\left({\frac {1}{3}}\right)\,}
K
(
i
)
=
2
π π -->
8
π π -->
Γ Γ -->
2
(
1
4
)
{\displaystyle K(i)={\frac {\sqrt {2\pi }}{8\pi }}\Gamma ^{2}\left({\frac {1}{4}}\right)\,}
K
(
2
)
=
4
2
π π -->
π π -->
Γ Γ -->
2
(
1
4
)
+
4
2
π π -->
π π -->
Γ Γ -->
2
(
1
4
)
i
{\displaystyle K({\sqrt {2}})={\frac {4{\sqrt {2\pi }}\pi }{\Gamma ^{2}\left({\frac {1}{4}}\right)}}+{\frac {4{\sqrt {2\pi }}\pi }{\Gamma ^{2}\left({\frac {1}{4}}\right)}}{\rm {i}}\,}
K
(
i
k
)
=
1
k
2
+
1
K
(
k
2
k
2
+
1
)
{\displaystyle K({\rm {i}}k)={\frac {1}{\sqrt {k^{2}+1}}}K\left({\sqrt {\frac {k^{2}}{k^{2}+1}}}\right)\,}
其中
Γ Γ -->
(
1
4
)
≈ ≈ -->
3.62561
{\displaystyle \Gamma \left({\frac {1}{4}}\right)\approx 3.62561\,}
Γ Γ -->
(
1
3
)
≈ ≈ -->
2.67893
{\displaystyle \Gamma \left({\frac {1}{3}}\right)\approx 2.67893\,}
第一类完全椭圆积分满足
E
(
k
)
K
′
(
k
)
+
E
′
(
k
)
K
(
k
)
− − -->
K
(
k
)
K
′
(
k
)
=
π π -->
2
{\displaystyle E(k)K'(k)+E'(k)K(k)-K(k)K'(k)={\frac {\pi }{2}}\,}
导数
d
d
k
K
n
(
k
)
=
n
K
n
− − -->
1
(
k
)
E
(
k
)
2
k
(
1
− − -->
k
)
− − -->
n
K
n
(
k
)
2
k
{\displaystyle {\frac {\rm {d}}{{\rm {d}}k}}K^{n}(k)={\frac {nK^{n-1}(k)E(k)}{2k(1-k)}}-{\frac {nK^{n}(k)}{2k}}}
漸近表示
K
(
k
2
)
≈ ≈ -->
π π -->
2
+
π π -->
8
k
2
1
− − -->
k
2
− − -->
π π -->
16
k
4
1
− − -->
k
2
{\displaystyle K(k^{2})\approx {\frac {\pi }{2}}+{\frac {\pi }{8}}{\frac {k^{2}}{1-k^{2}}}-{\frac {\pi }{16}}{\frac {k^{4}}{1-k^{2}}}}
這個近似在k<1/2時相對誤差小於3×10−4 ,若只保留前兩項則誤差在k<1/2時小於0.01
微分方程
此函數滿足以下微分方程
d
d
k
[
k
(
1
− − -->
k
2
)
d
K
(
k
)
d
k
]
=
k
K
(
k
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} k}}\left[k(1-k^{2}){\frac {\mathrm {d} K(k)}{\mathrm {d} k}}\right]=kK(k)}
此微分方程之另一解為
K
(
1
− − -->
k
2
)
{\displaystyle K({\sqrt {1-k^{2}}})}
,此解滿足以下關係。
d
d
k
K
(
1
− − -->
k
2
)
=
E
(
k
)
k
(
1
− − -->
k
2
)
− − -->
K
(
k
)
k
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} k}}K({\sqrt {1-k^{2}}})={\frac {E(k)}{k(1-k^{2})}}-{\frac {K(k)}{k}}}
.
第二类完全椭圆积分
第二类完全椭圆积分
E
(
k
)
{\displaystyle E(k)}
第二类完全椭圆积分
E
{\displaystyle E\,}
可以定义为
E
(
k
)
=
∫ ∫ -->
0
π π -->
2
1
− − -->
k
2
sin
2
-->
θ θ -->
d
θ θ -->
{\displaystyle E(k)=\int _{0}^{\frac {\pi }{2}}{\sqrt {1-k^{2}\sin ^{2}\theta }}\ {\rm {d}}\theta \!}
或者
E
(
k
)
=
∫ ∫ -->
0
1
1
− − -->
k
2
t
2
1
− − -->
t
2
d
t
.
{\displaystyle E(k)=\int _{0}^{1}{\frac {\sqrt {1-k^{2}t^{2}}}{\sqrt {1-t^{2}}}}\ {\rm {d}}t.\!}
它是第二类不完全椭圆积分的特殊情况:
E
(
k
)
=
E
(
1
;
k
)
=
E
(
π π -->
2
|
k
2
)
{\displaystyle E(k)=E(1;\,k)=E({\frac {\pi }{2}}\,|\,k^{2})\!}
它可以用幂级数 表达
E
(
k
)
=
π π -->
2
∑ ∑ -->
n
=
0
∞ ∞ -->
[
(
2
n
)
!
2
2
n
n
!
2
]
2
k
2
n
1
− − -->
2
n
{\displaystyle E(k)={\frac {\pi }{2}}\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}n!^{2}}}\right]^{2}{\frac {k^{2n}}{1-2n}}\!}
也就是
E
(
k
)
=
π π -->
2
{
1
− − -->
(
1
2
)
2
k
2
1
− − -->
(
1
⋅ ⋅ -->
3
2
⋅ ⋅ -->
4
)
2
k
4
3
− − -->
⋯ ⋯ -->
− − -->
[
(
2
n
− − -->
1
)
!
!
(
2
n
)
!
!
]
2
k
2
n
2
n
− − -->
1
− − -->
⋯ ⋯ -->
}
.
{\displaystyle E(k)={\frac {\pi }{2}}\left\{1-\left({\frac {1}{2}}\right)^{2}{\frac {k^{2}}{1}}-\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}{\frac {k^{4}}{3}}-\cdots -\left[{\frac {\left(2n-1\right)!!}{\left(2n\right)!!}}\right]^{2}{\frac {k^{2n}}{2n-1}}-\cdots \right\}.\!}
用高斯超几何函数 表示的话,第二类完全椭圆积分可以写作
E
(
k
)
=
π π -->
2
2
F
1
(
− − -->
1
2
,
1
2
;
1
;
k
2
)
.
{\displaystyle E(k)={\frac {\pi }{2}}\,_{2}F_{1}\left(-{\frac {1}{2}},{\frac {1}{2}};1;k^{2}\right).\,\!}
有如下性质
E
(
n
π π -->
2
;
k
)
=
n
E
(
k
)
{\displaystyle E({\frac {n\pi }{2}};k)=nE(k)\,\!}
n
∈ ∈ -->
Z
{\displaystyle n\in \mathbb {Z} \,\!}
复数值
E
(
x
+
y
i
)
=
{
π π -->
2
F
2
× × -->
1
× × -->
1
4
× × -->
0
× × -->
0
[
3
4
,
5
4
,
1
4
,
3
4
,
;
− − -->
;
− − -->
;
1
,
3
2
;
1
2
;
3
2
;
− − -->
y
2
,
x
2
]
− − -->
π π -->
8
x
F
2
× × -->
1
× × -->
1
4
× × -->
0
× × -->
0
[
1
4
,
3
4
,
− − -->
1
4
,
1
4
,
;
− − -->
;
− − -->
;
1
,
1
2
;
1
2
;
1
2
;
− − -->
y
2
,
x
2
]
}
+
i
{
− − -->
π π -->
8
y
F
2
× × -->
1
× × -->
1
4
× × -->
0
× × -->
0
[
3
4
,
5
4
,
1
4
,
3
4
,
;
− − -->
;
− − -->
;
1
,
3
2
;
1
2
;
3
2
;
− − -->
y
2
,
x
2
]
− − -->
3
64
π π -->
x
y
F
2
× × -->
1
× × -->
1
4
× × -->
0
× × -->
0
[
5
4
,
7
4
,
3
4
,
5
4
,
;
− − -->
;
− − -->
;
2
,
3
2
;
3
2
;
3
2
;
− − -->
y
2
,
x
2
]
}
{\displaystyle E(x+y{\rm {i}})=\left\{{\frac {\pi }{2}}F_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {3}{4}},{\frac {5}{4}},{\frac {1}{4}},{\frac {3}{4}},;-;-;\\1,{\frac {3}{2}};{\frac {1}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}-{\frac {\pi }{8}}xF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {1}{4}},{\frac {3}{4}},-{\frac {1}{4}},{\frac {1}{4}},;-;-;\\1,{\frac {1}{2}};{\frac {1}{2}};{\frac {1}{2}};\\-y^{2},x^{2}\end{bmatrix}}\right\}+{\rm {i}}\left\{-{\frac {\pi }{8}}yF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {3}{4}},{\frac {5}{4}},{\frac {1}{4}},{\frac {3}{4}},;-;-;\\1,{\frac {3}{2}};{\frac {1}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}-{\frac {3}{64}}\pi xyF_{2\times 1\times 1}^{4\times 0\times 0}{\begin{bmatrix}{\frac {5}{4}},{\frac {7}{4}},{\frac {3}{4}},{\frac {5}{4}},;-;-;\\2,{\frac {3}{2}};{\frac {3}{2}};{\frac {3}{2}};\\-y^{2},x^{2}\end{bmatrix}}\right\}\,\!}
特殊值
E
(
0
)
=
π π -->
2
{\displaystyle E(0)={\frac {\pi }{2}}\!}
E
(
1
)
=
1
{\displaystyle E(1)=1\!}
E
(
∞ ∞ -->
)
=
i
∞ ∞ -->
{\displaystyle E(\infty )={\rm {i}}\infty \,}
E
(
− − -->
∞ ∞ -->
)
=
∞ ∞ -->
{\displaystyle E(-\infty )=\infty \,}
E
(
i
∞ ∞ -->
)
=
(
2
2
− − -->
2
2
i
)
∞ ∞ -->
{\displaystyle E({\rm {i}}\infty )=({\frac {\sqrt {2}}{2}}-{\frac {\sqrt {2}}{2}}{\rm {i}})\infty \,}
E
(
i
)
=
2
π π -->
2
π π -->
Γ Γ -->
2
(
3
4
)
+
2
π π -->
π π -->
2
4
π π -->
Γ Γ -->
2
(
3
4
)
=
π π -->
2
π π -->
Γ Γ -->
2
(
1
4
)
+
2
π π -->
8
π π -->
Γ Γ -->
2
(
1
4
)
{\displaystyle E({\rm {i}})={\frac {\sqrt {2\pi }}{2\pi }}\Gamma ^{2}\left({\frac {3}{4}}\right)+{\frac {{\sqrt {2\pi }}{\pi }^{2}}{4\pi \Gamma ^{2}\left({\frac {3}{4}}\right)}}={\frac {\pi {\sqrt {2\pi }}}{\Gamma ^{2}\left({\frac {1}{4}}\right)}}+{\frac {\sqrt {2\pi }}{8\pi }}\Gamma ^{2}\left({\frac {1}{4}}\right)\,}
E
(
− − -->
i
∞ ∞ -->
)
=
(
2
2
+
2
2
i
)
∞ ∞ -->
{\displaystyle E(-{\rm {i}}\infty )=({\frac {\sqrt {2}}{2}}+{\frac {\sqrt {2}}{2}}{\rm {i}})\infty \,}
E
(
2
2
)
=
π π -->
3
2
Γ Γ -->
(
1
4
)
− − -->
2
+
1
8
π π -->
Γ Γ -->
(
1
4
)
2
{\displaystyle E\left({\tfrac {\sqrt {2}}{2}}\right)=\pi ^{\frac {3}{2}}\Gamma \left({\tfrac {1}{4}}\right)^{-2}+{\tfrac {1}{8{\sqrt {\pi }}}}\Gamma \left({\tfrac {1}{4}}\right)^{2}}
E
(
6
− − -->
2
4
)
=
2
3
⋅ ⋅ -->
3
4
3
Γ Γ -->
3
(
1
3
)
π π -->
2
+
4
3
(
3
3
4
+
27
4
)
48
π π -->
Γ Γ -->
3
(
1
3
)
{\displaystyle E\left({\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}\right)={\frac {{\sqrt[{3}]{2}}\cdot \ {\sqrt[{4}]{3}}}{3\Gamma ^{3}\left({\frac {1}{3}}\right)}}{\pi }^{2}+{\frac {{\sqrt[{3}]{4}}\left(3{\sqrt[{4}]{3}}+{\sqrt[{4}]{27}}\right)}{48{\pi }}}\Gamma ^{3}\left({\frac {1}{3}}\right)\!}
E
(
6
+
2
4
)
=
2
3
⋅ ⋅ -->
27
4
3
Γ Γ -->
3
(
1
3
)
π π -->
2
+
4
3
(
27
4
− − -->
3
4
)
16
π π -->
Γ Γ -->
3
(
1
3
)
{\displaystyle E\left({\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}\right)={\frac {{\sqrt[{3}]{2}}\cdot \ {\sqrt[{4}]{27}}}{3\Gamma ^{3}\left({\frac {1}{3}}\right)}}{\pi }^{2}+{\frac {{\sqrt[{3}]{4}}\left({\sqrt[{4}]{27}}-{\sqrt[{4}]{3}}\right)}{16{\pi }}}\Gamma ^{3}\left({\frac {1}{3}}\right)\!}
E
(
2
− − -->
1
)
=
π π -->
8
[
Γ Γ -->
(
1
8
)
Γ Γ -->
(
5
8
)
+
Γ Γ -->
(
5
8
)
Γ Γ -->
(
9
8
)
]
{\displaystyle E({\sqrt {2}}-1)={\frac {\sqrt {\pi }}{8}}\left[{\frac {\Gamma ({\frac {1}{8}})}{\Gamma ({\frac {5}{8}})}}+{\frac {\Gamma ({\frac {5}{8}})}{\Gamma ({\frac {9}{8}})}}\right]\!}
E
(
2
)
=
1
2
π π -->
Γ Γ -->
2
(
3
4
)
+
1
2
π π -->
Γ Γ -->
2
(
3
4
)
i
{\displaystyle E({\sqrt {2}})={\sqrt {\frac {1}{2\pi }}}\Gamma ^{2}\left({\frac {3}{4}}\right)+{\sqrt {\frac {1}{2\pi }}}\Gamma ^{2}\left({\frac {3}{4}}\right){\rm {i}}}
其中
Γ Γ -->
(
1
8
)
≈ ≈ -->
7.53394
{\displaystyle \Gamma \left({\frac {1}{8}}\right)\approx 7.53394\,}
Γ Γ -->
(
5
8
)
≈ ≈ -->
1.43452
{\displaystyle \Gamma \left({\frac {5}{8}}\right)\approx 1.43452\,}
Γ Γ -->
(
9
8
)
≈ ≈ -->
0.94174
{\displaystyle \Gamma \left({\frac {9}{8}}\right)\approx 0.94174\,}
Γ Γ -->
(
3
4
)
≈ ≈ -->
1.22541
{\displaystyle \Gamma \left({\frac {3}{4}}\right)\approx 1.22541\,}
导数、積分及微分方程
d
d
k
E
(
k
)
=
E
(
k
)
− − -->
K
(
k
)
k
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} k}}E(k)={\frac {E(k)-K(k)}{k}}}
∫ ∫ -->
E
(
k
)
d
k
=
2
3
[
k
K
(
k
)
− − -->
K
(
k
)
+
k
E
(
k
)
+
E
(
k
)
]
{\displaystyle \int E(k){\rm {d}}k={\frac {2}{3}}\left[kK(k)-K(k)+kE(k)+E(k)\right]}
(
k
2
− − -->
1
)
d
d
k
[
k
d
E
(
k
)
d
k
]
=
k
E
(
k
)
{\displaystyle (k^{2}-1){\frac {\mathrm {d} }{\mathrm {d} k}}\left[k\;{\frac {\mathrm {d} E(k)}{\mathrm {d} k}}\right]=kE(k)}
此微分方程之另解為
E
(
1
− − -->
k
2
)
− − -->
K
(
1
− − -->
k
2
)
{\displaystyle E({\sqrt {1-k^{2}}})-K({\sqrt {1-k^{2}}})}
。
第三类完全椭圆积分
不同
n
{\displaystyle n}
值的第三类完全椭圆积分
Π Π -->
(
n
,
k
)
{\displaystyle \Pi (n,k)}
第三类完全椭圆积分
Π Π -->
{\displaystyle \Pi \,}
可以定义为
Π Π -->
(
n
,
k
)
=
∫ ∫ -->
0
π π -->
2
d
θ θ -->
(
1
− − -->
n
sin
2
-->
θ θ -->
)
1
− − -->
k
2
sin
2
-->
θ θ -->
{\displaystyle \Pi (n,k)=\int _{0}^{\frac {\pi }{2}}{\frac {\ {\rm {d}}\theta }{(1-n\sin ^{2}\theta ){\sqrt {1-k^{2}\sin ^{2}\theta }}}}}
注意有时第三类椭圆积分被定义为带相反符号的
n
{\displaystyle n\,}
,也即
Π Π -->
′
(
n
,
k
)
=
∫ ∫ -->
0
π π -->
2
d
θ θ -->
(
1
+
n
sin
2
-->
θ θ -->
)
1
− − -->
k
′
2
sin
2
-->
θ θ -->
.
{\displaystyle \Pi '(n,k)=\int _{0}^{\frac {\pi }{2}}{\frac {\ {\rm {d}}\theta }{(1+n\sin ^{2}\theta ){\sqrt {1-k'^{2}\sin ^{2}\theta }}}}.}
用阿佩尔函数 可表示为
Π Π -->
(
m
,
n
)
=
π π -->
2
F
1
(
1
2
;
1
,
1
2
;
1
;
m
,
n
)
{\displaystyle \Pi (m,n)={\frac {\pi }{2}}F_{1}\left({\frac {1}{2}};1,{\frac {1}{2}};1;m,n\right)\,}
第三类完全椭圆积分和第一类椭圆积分之间的关系
Π Π -->
[
(
1
+
x
)
(
1
− − -->
3
x
)
(
1
− − -->
x
)
(
1
+
3
x
)
,
(
1
+
x
)
3
(
1
− − -->
3
x
)
(
1
− − -->
x
)
3
(
1
+
3
x
)
]
− − -->
1
+
3
x
6
x
K
[
(
1
+
x
)
3
(
1
− − -->
3
x
)
(
1
− − -->
x
)
3
(
1
+
3
x
)
]
=
{\displaystyle \Pi \left[{\frac {(1+x)(1-3x)}{(1-x)(1+3x)}},{\frac {(1+x)^{3}(1-3x)}{(1-x)^{3}(1+3x)}}\right]-{\frac {1+3x}{6x}}K\left[{\frac {(1+x)^{3}(1-3x)}{(1-x)^{3}(1+3x)}}\right]=\,}
{
0
for
0
<
x
<
1
− − -->
π π -->
(
x
− − -->
1
)
(
x
− − -->
1
)
(
1
+
3
x
)
12
x
for
x
<
0
,
x
>
1
{\displaystyle {\begin{cases}0&{\mbox{for }}0<x<1\!\,\\-{\frac {\pi (x-1){\sqrt {(x-1)(1+3x)}}}{12x}}&{\mbox{for }}x<0,x>1\!\,\\\end{cases}}}
如
K
(
2
2
)
=
π π -->
4
π π -->
Γ Γ -->
2
(
1
4
)
=
3
− − -->
6
3
− − -->
9
2
Π Π -->
(
1
− − -->
2
3
− − -->
3
2
,
1
2
)
{\displaystyle K\left({\frac {\sqrt {2}}{2}}\right)={\frac {\sqrt {\pi }}{4\pi }}\Gamma ^{2}\left({\frac {1}{4}}\right)={\frac {3-{\sqrt {6{\sqrt {3}}-9}}}{2}}\Pi \left({\frac {1-{\sqrt {2{\sqrt {3}}-3}}}{2}},{\frac {1}{2}}\right)\,}
=
3
+
6
3
− − -->
9
2
Π Π -->
(
1
+
2
3
− − -->
3
2
,
1
2
)
− − -->
π π -->
2
+
3
+
7
+
38
9
3
{\displaystyle ={\frac {3+{\sqrt {6{\sqrt {3}}-9}}}{2}}\Pi \left({\frac {1+{\sqrt {2{\sqrt {3}}-3}}}{2}},{\frac {1}{2}}\right)-\pi {\sqrt {2+{\sqrt {3}}+{\sqrt {7+{\frac {38}{9}}{\sqrt {3}}}}}}\,}
偏导数
∂ ∂ -->
∂ ∂ -->
n
Π Π -->
(
n
,
k
)
=
1
2
(
k
2
− − -->
n
)
(
n
− − -->
1
)
[
E
(
k
)
+
(
k
2
− − -->
n
)
K
(
k
)
n
+
(
n
2
− − -->
k
2
)
Π Π -->
(
n
,
k
)
n
]
{\displaystyle {\frac {\partial }{\partial n}}\Pi (n,k)={\frac {1}{2(k^{2}-n)(n-1)}}\left[E(k)+{\frac {(k^{2}-n)K(k)}{n}}+{\frac {(n^{2}-k^{2})\Pi (n,k)}{n}}\right]}
∂ ∂ -->
∂ ∂ -->
k
Π Π -->
(
n
,
k
)
=
k
n
− − -->
k
2
[
E
(
k
)
k
2
− − -->
1
+
Π Π -->
(
n
,
k
)
]
{\displaystyle {\frac {\partial }{\partial k}}\Pi (n,k)={\frac {k}{n-k^{2}}}\left[{\frac {E(k)}{k^{2}-1}}+\Pi (n,k)\right]}
特殊值
Π Π -->
(
0
,
0
)
=
π π -->
2
{\displaystyle \Pi (0,0)={\frac {\pi }{2}}\,}
Π Π -->
(
n
,
0
)
=
π π -->
2
1
− − -->
n
{\displaystyle \Pi (n,0)={\frac {\pi }{2{\sqrt {1-n}}}}\,}
Π Π -->
(
n
,
1
)
=
− − -->
∞ ∞ -->
sgn
-->
n
− − -->
1
{\displaystyle \Pi (n,1)=-{\frac {\infty }{\operatorname {sgn} {n-1}}}\,}
Π Π -->
(
n
,
n
)
=
E
(
n
)
1
− − -->
n
{\displaystyle \Pi (n,{\sqrt {n}})={\frac {E(n)}{1-n}}\,}
Π Π -->
(
0
,
n
)
=
K
(
n
)
{\displaystyle \Pi (0,{\sqrt {n}})=K(n)\,}
Π Π -->
(
± ± -->
∞ ∞ -->
,
n
)
=
0
{\displaystyle \Pi (\pm \infty ,{\sqrt {n}})=0\,}
Π Π -->
(
n
,
± ± -->
∞ ∞ -->
)
=
0
{\displaystyle \Pi (n,\pm \infty )=0\,}
函數關係
勒讓得 關係指出了第一类和第二类完全椭圆积分之间的联系:
K
(
k
)
E
(
1
− − -->
k
2
)
+
E
(
k
)
K
(
1
− − -->
k
2
)
− − -->
K
(
k
)
K
(
1
− − -->
k
2
)
=
π π -->
2
.
{\displaystyle K(k)E\left({\sqrt {1-k^{2}}}\right)+E(k)K\left({\sqrt {1-k^{2}}}\right)-K(k)K\left({\sqrt {1-k^{2}}}\right)={\frac {\pi }{2}}.}
参看
参考