奈奎斯特速率

图1:奈奎斯特频率和速率的典型示例。它们很少相等,因为这需要将采样率提高到带宽的2倍(即带宽的4倍)。

信号处理中,奈奎斯特速率(Nyquist rate,以哈里·奈奎斯特命名)等于某一函数或信号的最高频率(带宽)的两倍,即,是不发生混叠失真的最低采样率。其单位是单位时间的采样次数,通常为每秒采样次数(Sps)或赫兹(Hz)[1]。奈奎斯特速率对应的最大抽样间隔,称为奈奎斯特间隔。需要注意的是,“奈奎斯特速率”是连续时间信号的属性,而“奈奎斯特频率”是离散时间系统的属性。

“奈奎斯特速率”一词也用于不同的语境,以符号每秒为单位,表示带宽受限的基带信道(如电报线路)[2]通带信道(如受限的无线电频段或频分多路复用信道)中符号速率的上限。

与采样的关系

图2:带限函数的傅里叶变换

当以恒定采样率 sample/second对连续函数进行采样时,总会有无限多的其他连续函数可以符合这些采样点。但其中只有一个函数的带宽限制为Hz,也就是时它的傅里叶变换 为零。通常,用于从采样点重建连续函数的数学算法可以无限接近这一理论上的、但无限长的函数。因此,如果原始函数 的带限为(即奈奎斯特准则),插值算法将重建出唯一的该函数。

按照函数自身的带宽来表示(如图所示),奈奎斯特准则通常被表述为被称为带宽为 的函数的奈奎斯特速率。当不满足奈奎斯特准则时(例如)时,就会发生混叠失真。

图3:上方两幅图展示了两种不同函数的傅里叶变换,它们在特定采样率下生成相同的结果。低通函数的采样率高于其奈奎斯特速率,而带通函数被欠采样,实际效果是将其转换为基带。下方的图示展示了采样过程中混叠如何生成相同的频谱结果。

有意的混叠

图3描绘了一类被称为基带或低通的函数,其正频范围的主要能量集中在。如果函数的频率范围是,且,则称其为带通函数。在某些情况下,人们希望将带通函数转换为基带。这可以通过混频(外差英语Heterodyne)的方式,将带通函数下移到的频率范围内。这么做的一个常见原因是为了降低奈奎斯特速率,从而更高效地存储数据。

事实上,可以通过直接以低于奈奎斯特速率的方式对带通函数进行采样(称为欠采样)来实现类似的结果。具体而言,只需以一个最小的整数子倍频率对带通信号采样,这个频率满足的基带奈奎斯特准则即可。

参考资料

  1. ^ Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John R. Discrete-time signal processing需要免费注册 2nd. Upper Saddle River, N.J.: Prentice Hall. 1999: 140. ISBN 0-13-754920-2. T is the sampling period, and its reciprocal, fs=1/T, is the sampling frequency, in samples per second. 
  2. ^ Roger L. Freeman. Telecommunication System Engineering. John Wiley & Sons. 2004: 399. ISBN 0-471-45133-9. 

Read other articles:

Zambales merupakan sebuah provinsi di Filipina. Ibu kotanya ialah Iba. Provinsi ini terletak di region Luzon Tengah. Provinsi ini memiliki luas wilayah 3.714 km² dengan memiliki jumlah penduduk 590,848 jiwa (2015). Provinsi ini memiliki angka kepadatan penduduk 160 jiwa/km². Munisipalitas Munisipalitas Jumlah Barangays Wilayah(km²) Penduduk(2015) Kepadatan penduduk(jiwa/km²) Botolan 57.707 Cabangan 27.174 Candelaria 27.174 Castillejos 64.841 Iba 50,506 Masinloc 47,719 Palauig 34,947...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Tao Kan – berita · surat kabar · buku · cendekiawan · JSTOR Tao Kan Tao Kan (Hanzi: 陶侃, 259-334) adalah seorang jenderal ternama pada masa Dinasti Jin, Tiongkok, gelarnya adalah Adipati Huan dari Cha...

 

 

Bisnis Indonesia GroupJenisKelompok usaha mediaIndustriMediaDidirikan14 Desember 1985PendiriSukamdani Sahid GitosardjonoIr. CiputraAnthony SalimEric F.H. SamolaKantorpusat Jakarta, IndonesiaTokohkunciLulu TeriantoArif BudisusiloHariyadi SukamdaniCandra CiputraAlvin Widarta SariaatmadjaProdukMediaTelekomunikasiPropertiSitus webwww.bisnisindonesiagroup.com Bisnis Indonesia Group adalah kelompok usaha media yang didirikan oleh Sukamdani Sahid Gitosardjono (Sahid Group), Ir. Ciputra (Ciputra Grou...

BCU logo The Barbados Cycling Union or BCU is the national governing body of cycle racing in Barbados. The BCU is a member of the UCI and COPACI. External links Barbados Cycling Union official website vteSports governing bodies in Barbados (BAR)Summer Olympic Sports Aquatics Diving Swimming Synchronized Swimming Water Polo Archery Athletics Badminton Basketball Boxing Canoeing Cycling Equestrian Fencing Field Hockey Football Golf Gymnastics Handball Judo Modern Pentathlon Rugby 7's Rowing Sai...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2024. Tunggang tangkas di Kentucky Horse Park Tunggang tangkas, [1] paling sering digambarkan sebagai senam dan menari di atas kuda, yang dapat dilakukan baik secara kompetitif maupun non-kompetitif. Tunggang tangkas memiliki sejarah sebagai aksi be...

 

 

Historic house in California, United States United States historic placeSquatter's CabinU.S. National Register of Historic Places Squatter's CabinShow map of CaliforniaShow map of the United StatesNearest cityThree Rivers, CaliforniaCoordinates36°33′31″N 118°45′9″W / 36.55861°N 118.75250°W / 36.55861; -118.75250Built1886ArchitectJohn VestNRHP reference No.77000116Added to NRHPMarch 8, 1977[1] The Squatter's Cabin is the only remnant of the...

Irish censorship and classification within Ireland This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Irish Film Classification Office – news · newspapers · books · scholar · JSTOR (February 2012) (Learn how and when to remove this template message) Irish Film Classification OfficeOifig Aicmithe Scannán na hÉ...

 

 

Nepali writer and novelist (1914-1981) Bhawani Bhikshuभवानी भिक्षुBornNohor Ram Gupta(1914-06-03)3 June 1914Taulihawa, Kapilvastu, NepalDied16 April 1981(1981-04-16) (aged 66)Kathmandu, NepalOccupation(s)Writer, novelistNotable workAagatPipe no.2AwardsMadan Puraskar (1975)Sajha Puraskar (1975)Tribhuwan Pragya Puraskar 2036 BS (1979-1980) Nohor Ram Gupta, professionally known as Bhawani Bhikshu (Nepali: भवानी भिक्षु) was a Nepali writer, poet, l...

 

 

Bupati BengkayangLambang Kabupaten BengkayangPetahanaSebastianus Darwissejak 26 Februari 2021KediamanRumah Dinas Bupati BengkayangMasa jabatan5 tahunDibentuk1999Pejabat pertamaJacobus LunaSitus webbengkayangkab.go.id Berikut ini adalah daftar bupati Bengkayang yang menjabat sejak pembentukannya pada tahun 1999. No Bupati Mulai menjabat Akhir menjabat Ket. Wakil Bupati — Drs. Jacobus LunaM.Si. 27 April 1999 4 Mei 2000 [Ket. 1] — 1 4 Mei 2000 10 Agustus 2005 [Ket. 2] Dr...

Questa voce sull'argomento contee dell'Illinois è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Contea di AlexanderconteaLocalizzazioneStato Stati Uniti Stato federato Illinois AmministrazioneCapoluogoCairo Data di istituzione1819 TerritorioCoordinatedel capoluogo37°11′24″N 89°20′24″W / 37.19°N 89.34°W37.19; -89.34 (Contea di Alexander)Coordinate: 37°11′24″N 89°20′24″W / 37.19°N 89.34�...

 

 

Italian film actress Lia FrancaFranca in the movie What Scoundrels Men Are! (1932)BornLivia Caterina Petra Penso1912Trieste, Kingdom of ItalyDied1 January 1988(1988-01-01) (aged 75–76)Rome, ItalyOther namesLya Franca Libia FrancaOccupationActress Lia Franca (1912 – 1 January 1988) was an Italian film actress. She was sometimes credited as Lya Franca and Libia Franca.[1] Life and career Born Livia Caterina Petra Penso in Trieste, Franca started her career winning a beauty...

 

 

Finnish mathematician For the Canadian Olympic wrestler, see Matti Jutila (wrestler). Matti JutilaBorn1943 (age 80–81)Scientific careerFieldsMathematicsInstitutionsUniversity of Turku Matti Ilmari Jutila (born 1943) is a mathematician and a professor emeritus at the University of Turku.[1] He researches in the field of analytic number theory. Education and career Jutila completed a doctorate at the University of Turku in 1970, with a dissertation related to Linnik's constan...

Russian linguist (born 1948) You can help expand this article with text translated from the corresponding article in Russian. (December 2020) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text...

 

 

  2021 Emilia Romagna Grand PrixRace detailsRace 16 of 18 races in the2021 Grand Prix motorcycle racing seasonDate24 October 2021Official nameGran Premio Nolan del Made in Italy e dell'Emilia-RomagnaLocationMisano World Circuit Marco SimoncelliMisano Adriatico, Province of Rimini, ItalyCoursePermanent racing facility4.226 km (2.626 mi)MotoGPPole positionRider Francesco Bagnaia DucatiTime 1:33.045 Fastest lapRider Francesco Bagnaia DucatiTime 1:32.171 on lap 16 PodiumFirst ...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

Lower house of Paraguay's legislature Chamber of Deputies Cámara de DiputadosTypeTypeLower House of the Congress of Paraguay HistoryFounded1813[1]LeadershipPresidentRaúl Luís Latorre, ANR since 1 July 2023 StructureSeats80Political groupsGovernment   ANR-PC (48) Opposition (32)   PLRA (22)   PCN (4)   CDN (2)   PEN (1)   PPH (1)   PPQ (1)   PPS (1) ElectionsVoting systemProportional representationLast election30 April 2023Meeting placeLeg...

 

 

密西根大学狼獾队Michigan Wolverines全名密西根大学狼獾队綽號狼獾 Wolverines成立1817年(建校)1879年(建队)城市美国密西根州安娜堡主場密西根体育场克莱斯勒中心竞技场约斯特冰上竞技场雷费舍尔体育场菲利体育场密西根大学足球场容納人數115,109人拥有者密西根大学聯賽NCAA、十大联盟球衣廣告BTN網站官方網站 主場球衣 客场球衣 第三球衣 密西根大学狼獾队(Michigan Wolverin...

 

 

千葉県を流れる利根川水系の河川については「黒部川 (千葉県)」をご覧ください。 黒部川 黒部川河口から朝日、白馬~五竜岳、立山連峰水系 一級水系 黒部川種別 一級河川延長 85 km平均流量 12.18 m3/s(宇奈月観測所 1994年)流域面積 667 km2水源 鷲羽岳(富山市)水源の標高 2,924 m河口・合流先 日本海(黒部市、入善町)流域 日本 富山県 テンプレートを表示 黒部ダム �...

Henning von HoltzendorffAdmiral von Holtzendorff in 1918Birth nameHenning Rudolf Adolf Karlvon HoltzendorffBorn(1853-01-09)9 January 1853Berlin, PrussiaDied7 June 1919(1919-06-07) (aged 66)Uckermark district,Weimar RepublicAllegiance Prussia North German Confederation German EmpireService/branch North German Federal Navy Imperial German NavyYears of service1869–19131915–1918RankGroßadmiralUnitWest Africa SquadronEast Asia SquadronBaltic Sea Naval Statio...

 

 

Kemp Powers nel 2023 Kemp Powers (New York, 30 ottobre 1973) è un drammaturgo, sceneggiatore e regista statunitense. Indice 1 Carriera 2 Filmografia 2.1 Sceneggiatore 2.1.1 Cinema 2.1.2 Televisione 2.1.3 Cortometraggi 2.2 Regista 2.3 Produttore 2.4 Attore 3 Teatrografia 3.1 Drammaturgo 4 Riconoscimenti 5 Note 6 Altri progetti 7 Collegamenti esterni Carriera Dopo aver esordito col cortometraggio This Day Today (2012), nel 2013 Kemp Powers ha scritto il dramma One Night in Miami, osannato dall...