Tượng đài Aleksander Fredro tại Wrocław
|
Read other articles:
Roberto CavalliOn RunawayLahir15 November 1940 (umur 83)Florence, ItaliaKebangsaanItaliaPendidikanAcademy of Art of Florence, ItaliaLabelRoberto Cavalli, just cavalli, Roberto Cavalli Junior, Roberto Cavalli Parfums, Roberto Cavalli Home [1] Roberto Cavalli ialah seorang fashion designer asal Italia yang lahir pada 15 November 1940 di Florence, Itali.[2] Cavalli merupakan anak dari Giorgio Cavalli (surveyor pertambangan) dan Marcela Cavalli (penjahit).[2][3...
Pour la commune nouvelle française, voir La Haye (Manche). Pour les articles homonymes, voir Haye. La Haye Den Haag Héraldique. Drapeau. De haut en bas, gauche à droite : étang du Binnenhof, tours de ministères (Justice et Intérieur), centre-ville de La Haye et jetée de Schéveningue. Administration Pays Pays-Bas Province Hollande-Méridionale Bourgmestre Mandat Jan van Zanen (VVD) 2020-2026 Code postal 2491-2599 Indicatif téléphonique +(31) Démographie Gentilé Haguenais ou H...
KoperSutradaraRichard Oh, Dewi Umaya, Tati Gobel & Richard Oh, Karima JufriDitulis olehRichard OhPemeranAnjasmaraMaya HasanDjenar Maesa AyuDjaduk FeriantoPenata musikAndi RiantoSinematograferYadi SugandhiPenyuntingWawan I. WibowoDistributorMetafor PicturesTanggal rilis31 Agustus 2006Durasi133 MenitNegaraIndonesiaBahasaBahasa Indonesia Koper (The Lost Suitcase) adalah sebuah film drama Indonesia yang diproduksi pada tahun 2006. Film yang disutradarai oleh Richard Oh ini dibintangi an...
Chemical compound AlclofenacClinical dataAHFS/Drugs.comInternational Drug NamesATC codeM01AB06 (WHO) Identifiers IUPAC name 2-(3-chloro-4-prop-2-enoxyphenyl)acetic acid CAS Number22131-79-9PubChem CID30951ChemSpider28714 YUNIIM9CP5H21N8KEGGD01252 YChEMBLChEMBL94081 YCompTox Dashboard (EPA)DTXSID4020038 ECHA InfoCard100.040.709 Chemical and physical dataFormulaC11H11ClO3Molar mass226.66 g·mol−13D model (JSmol)Interactive image SMILES Clc1cc(ccc1OC\C=C)CC(=O)O I...
1958 1967 Élections législatives de 1962 dans le Haut-Rhin 5 sièges de députés à l'Assemblée nationale 18 et 25 novembre 1962 Corps électoral et résultats Inscrits 335 456 Votants au 1er tour 236 394 70,47 % 4,8 Votes exprimés au 1er tour 227 446 Votants au 2d tour 52 997 69,26 % Votes exprimés au 2d tour 50 969 Majorité présidentielle Liste Union pour la nouvelle République (UDT)Républicains indépendantsModérés Voi...
American politician For other people with the same name, see James O'Connor (disambiguation). James F. O'ConnorMember of the U.S. House of Representativesfrom Montana's 2nd districtIn officeJanuary 3, 1937 – January 15, 1945Preceded byRoy E. AyersSucceeded byWesley A. D'EwartMember of the Montana House of RepresentativesIn office1917–1918 Personal detailsBorn(1878-05-07)May 7, 1878near California Junction, Iowa, United StatesDiedJanuary 15, 1945(1945-01-15) (aged ...
Priestess of Hathor or Prophetess of Hathor was the title of the Priestess of the goddess Hathor in the Temple of Dendera in Ancient Egypt.[1] Title The title is known to be given during the Old Kingdom of Egypt, and was at that point very powerful and prestigious. The mummies of the priestesses testify that they were decorated with a religious tattoo, covering the stomach around the area of the uterus.[2] After the Middle Kingdom of Egypt, the title was often irregularly awar...
Gender, jantina atau lapuan[1] adalah serangkaian karakteristik yang terikat kepada dan membedakan maskulinitas dan femininitas. Karakteristik tersebut dapat mencakup jenis kelamin (laki-laki, perempuan, atau interseks), hal yang ditentukan berdasarkan jenis kelamin (struktur sosial sepeti peran gender), atau identitas gender.[2][3][4] Orang-orang yang merasa atau tidak mengidentifikasi dirinya sebagai pria atau wanita umumnya disebut nonbiner atau genderqueer....
Wangsa KarolingWangsa KarlingNasab raja-rajaSalib Karoling[1]NegaraKekaisaran KarolingKekaisaran Romawi SuciKerajaan Orang FrankaKerajaan LombardiaKadipaten BayernKadipaten BohemiaKelompok etnisFranka/LombardiDidirikan714 (714)PendiriKarel MartelPenguasa terakhirAdelaide dari VermandoisGelar Kaisar Romawi Suci Raja Orang Franka Raja Orang Lombardi Raja Italia Raja Negeri Franka Timur Raja Aquitania Raja Burgundia Adipati Bohemia Adipati Bayern Adipati Maine Bupati Vermandois Bupa...
Sekolah Tinggi Teologi SunsugosLambang STT SunsugosJenisSwastaDidirikan1 Mei 2000RektorDr. Sulistyo A.T., M.Th.LokasiJakarta Utara, DKI Jakarta, IndonesiaKampusJalan Melati No. 39-41, Jakarta Utara, DKI JakartaNama julukanSTT SunsugosSTTSSitus websttsunsugosjakarta.ac.id Sekolah Tinggi Teologi Sunsugos (disingkat STT Sunsugos atau STTS) adalah sebuah perguruan tinggi swasta yang berlokasi di Jakarta Utara, DKI Jakarta, Indonesia. STT Sunsugos diselenggarakan oleh Yayasan Corpus Christy Pembah...
Possibly extinct language of Vanuatu NavwienNative toVanuatuRegionMalakulaNative speakershandful (2013)[1]Language familyAustronesian Malayo-PolynesianOceanicSouthern OceanicNorth-Central VanuatuCentral VanuatuMalakulaMalakula InteriorNavwienLanguage codesISO 639-3None (mis)Glottolognavw1234ELPNavwienNavwien is classified as Critically Endangered by the UNESCO Atlas of the World's Languages in Danger Navwien is a possibly extinct language of Vanuatu, presumably one of the Ma...
التقسيمات الإدارية لألمانيا النازية عام 1944. التقسيمات الإدارية في ألمانيا النازية في عام 1944 ولايات جمهورية فايمار، 1919-1937. خريطة التقسيم الإداري في عام 1944 جاو للحزب النازي في 1926 و1928 و1933 و1937 و1939 و1943. جاو (المفرد: Gau ) هي التقسيمات الإدارية الرئيسية حكم الأمر الواقع في ألمانيا ا...
انقلاب 1953 في إيران جزء من أزمة عبادان، والحرب الباردة، وتورط الولايات المتحدة في تغيير النظام التاريخ وسيط property غير متوفر. نهاية 19 أغسطس 1953 البلد إيران الموقع طهران تعديل مصدري - تعديل 32°25′40″N 53°41′17″E / 32.427908°N 53.688046°E / 32.427908; 53.688046 انقلا�...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) غوس جيلمور معلومات شخصية الميلاد 31 يناير 1962 (62 سنة) سيدني مواطنة أستراليا الحياة العملية المدرسة الأم جامعة نيو ساوث ويلزالكلية العسكرية الملك�...
Science developed and practised during the Islamic Golden Age Islamic science redirects here. For the Islamic religious sciences, see Islamic sciences. The Tusi couple, a mathematical device invented by the Persian polymath Nasir al-Din Tusi to model the not perfectly circular motions of the planets Science in the medieval Islamic world was the science developed and practised during the Islamic Golden Age under the Abbasid Caliphate of Baghdad, the Umayyads of Córdoba, the Abbadids of Sevill...
提示:此条目页的主题不是萧。 簫琴簫與洞簫木管樂器樂器別名豎吹、豎篴、通洞分類管樂器相關樂器 尺八 东汉时期的陶制箫奏者人像,出土於彭山江口汉崖墓,藏於南京博物院 箫又稱洞簫、簫管,是中國古老的吹管樂器,特徵為單管、豎吹、開管、邊稜音發聲[1]。「簫」字在唐代以前本指排簫,唐宋以來,由於單管豎吹的簫日漸流行,便稱編管簫爲排簫�...
Capital and largest city of Peru This article is about the capital of Peru. For other uses, see Lima (disambiguation). Capital city in PeruLima Ciudad de Los ReyesCapital citySan Isidro skylineArchbishop's Palace and Metropolitan CathedralFountain of Plaza MayorPark of the ReserveSan Francisco el Grande BasilicaLa Marina LighthouseMiraflores skyline FlagCoat of armsNickname(s): Ciudad de los Reyes (City of the Kings) La Tres Veces Coronada Villa (The Three Times Crowned Ville) La Perla d...
You can help expand this article with text translated from the corresponding article in French. (December 2008) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wiki...
This template does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects:Bulgaria Mid‑importance Bulgaria portalThis template is within the scope of WikiProject Bulgaria, a collaborative effort to improve the coverage of Bulgaria on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.BulgariaWikipedia:WikiProject BulgariaTemplate:WikiProject BulgariaB...
.إتجاهات معرفة بواسطة مجموعة مرتبة من المتجهاتإتجاه عكسي مقابل لإلغاء الضرب الخارجيتفسير هندسيفي مجال الرياضيات، الضرب الخارجي (بالإنجليزية: Exterior product أو Wedge product) لمتجهات هو تركيب جبري يستخدم في الهندسة لدراسة المساحات والأحجام وكذلك الأبعاد الأعلى المناظرة. الضرب الخا...