Нова зоря

Акреція на білий карлик у тісній подвійній системі (в уявленні художника)

Нова́ зоря (в астрономії зазвичай просто Нова, від лат. Nova) — зоря, світність якої раптово збільшується в ~103—106 разів (на 7—19 зоряних величин), а потім поступово зменшується (протягом місяців чи років). Здебільшого світність збільшується в десятки тисяч разів. Спочатку вважали, що спалахує нова (раніше не існуюча) зоря, оскільки такі зорі до спалаху не спостерігалися[1].

З появою нових засобів спостереження (телескопів, фотографії) з'ясувалося, ці зорі існують як до, так і після спалаху, але вони дуже слабкі, принаймні недоступні для спостереження неозброєним оком. Однак у максимумі блиску світність нової порівняна зі світністю найяскравіших надгігантів — їх абсолютна зоряна величина становить −8m….−7m[1].

Спалах відбувається на поверхні білого карлика, що входить до складу тісної подвійної системи. Із супутника (зазвичай, гіганта або надгіганта, що заповнив свою порожнину Роша), відбувається перетікання багатої на Гідроген речовини, яка накопичується на поверхні білого карлика. Коли біля підніжжя водневого шару температура та густина зросте до рівня, достатнього для початку термоядерних реакцій, відбувається спалах, який призводить до скидання оболонки зі швидкістю близько 1000 км/с.

Історія

Появу «нових» зір на небосхилі уважні спостерігачі помічали з давніх-давен. У східних хроніках (китайських, корейських, японських, в'єтнамських) вони фіксувалися неодноразово[2][3]. Про деякі з них є згадки в європейських джерелах. Зокрема Пліній Старший стверджує, що саме поява нової зорі в сузір'ї Скорпіона (близько 134 до н. е.) спонукала Гіппарха до складання його зоряного каталогу[4]. Заради точності слід зазначити, що деякі зі спостережуваних античними астрономами «нових» зір за сучасною класифікацією належать до наднових.

Після винайдення телескопа нових виявляли дедалі більше, починаючи з другої половини XIX сторіччя — майже щорічно. У XX сторіччі було лише п'ять років (1908, 1911, 1923, 1965 та 1966), протягом яких астрономи не зафіксували появу нових. Проте серед усіх нових XX сторіччя було лише три, які в максимумі блиску були яскравіші першої зоряної величини[5].

1929 року Едвін Габбл знайшов нові зорі в галактиці Андромеди. Регулярні спостереження за цією галактикою показали, що в ній щороку спалахує 25—30 нових[6].

У нашій Галактиці спалахи спостерігаються лише в невеликій її частині (близько сотої частки її обсягу)[7]. Вважається, що в нашій Галактиці щороку спалахує від 50 до 300 нових, але більшість із них залишається непоміченими. За незмінних темпів протягом часу існування нашої Галактики (1010 років) мало статися близько 1012 спалахів нових. Однак це число перевищує загальну кількість зір у нашій Галактиці. З цього можна зробити висновок, що нові зорі мають спалахувати повторно[5].

Прогрес у розумінні причин спалахів відбувся після того, як з'ясувалося, що всі детально вивчені нові входять до складу подвійних систем. Вперше такий факт встановив М. Вокер (1954) щодо Нової DQ Геркулеса, яка спалахнула 1934 року[5][7].

Система позначень

На ранніх етапах досліджень нові — які були тимчасовими гостями на нашому небі — розглядали як унікальне явище й відділяли від змінних зір. Первинне позначення нових складається з літери лат. N, скороченої латинської назви сузір'я, у якому спостерігалася зоря, та року спостереження. Наприклад, найяскравіша нова двадцятого сторіччя (−1,1m), спалах якої зафіксовано 1918 року в сузір'ї Орла, мала позначення N Aql 1918, де Aql — скорочення від лат. Aquila (Орел). Надалі з'ясувалося, що ті нові, які доступні для спостережень у мінімумі, виявляють змінність і між спалахами, а за сучасними даними — більшість із них має спалахувати повторно[5].

Після Другої світової війни на всі нові було розповсюджено систему позначень змінних зір. Нова Орла 1918 року[en] отримала позначення V603 Aql. Наразі Бюро астрономічних телеграм Міжнародного астрономічного союзу намагається надавати новим остаточні позначення в Загальному каталозі змінних зір одразу після їх відкриття[5].

Класифікація

Нові утворюють окремий клас серед вибухових та новоподібних зір і поділяються на чотири підкласи[8]:

  • NA — швидкі нові, які характеризуються швидким підйомом та спадом блиску (спад на три зоряні величини після максимуму відбувається менш, ніж за 100 днів);
  • NB — повільні нові (спад на три зоряні величини після максимуму триває більше 100 днів);
  • NC — нові з дуже повільним розвитком, які роками залишаються в максимумі блиску й дуже повільно згасають;
  • NR — повторні нові. Відрізняються тим, що у них зафіксовано не один спалах, а два (або більше) з інтервалом від 10 до 80 років.

Суттєвої різниці між швидкими та повільними новими немає, цей поділ досить умовний. Згідно з сучасними уявленнями, всі нові мають бути повторними. Для більшості з них спостерігався лише один спалах тільки тому, що період між спалахами дуже великий[1].

За складом білого карлика виділяють два типи нових: «вуглецево-кисневі», з початковою масою зорі менше ~8 M, що пройшли стадії горіння гідрогену та гелію, залишивши багате вуглецем та киснем ядро; та «киснево-неонові», що утворилися з масивніших зір (8—10 M), які додатково пройшли стадію горіння вуглецю, залишивши багате киснем та неоном ядро[9].

Крива блиску

Криві блиску типових нових поділяють на такі ділянки[5]:

  • Стан до спалаху.
  • Стрімке початкове зростання блиску. Триває від кількох годин у найшвидших нових до трьох діб — у найповільніших.
  • Зупинка (або затримка) зростання блиску, коли він приблизно на 2m менший максимального. Тривалість дуже різниться: від 1,5 до 40 діб. У найшвидших нових (наприклад, V1500 Лебедя) ця стадія практично непомітна.
  • Остаточний підйом та фаза максимуму. Триває від кількох годин (у найшвидших нових) до 100 діб. У найповільніших нових може тривати роками.
  • Початковий спад. Зазвичай відповідає зменшенню блиску на 3m.
  • Перехідна стадія. Це може бути зміна нахилу кривої, коливання блиску або глибокий мінімум із подальшим підйомом.
  • Остаточний спад. Блиск повільно зменшується до початкового рівня (до спалаху); нахил кривої менший, ніж на попередніх ділянках.

Стадії розвитку спектра

Якщо не враховувати спектри до спалаху та після його завершення, у спектрах нових виділяють п'ять стадій[4]:

  • передмаксимальний спектр;
  • головний спектр;
  • дифузно-іскровий спектр;
  • оріонів спектр;
  • небулярний спектр.

Кожна нова спектральна стадія починається до завершення попередньої і деякий час вони спостерігаються разом.

Спектр до спалаху

Єдиний відомий знімок спектра класичної нової до спалаху — знімок спектра V603 Орла[en] (1918). Його дисперсія мала, а сам знімок слабкий. Розподіл енергії у неперервному спектрі схожий на такий у зорях типу А чи В, але не вдається розрізнити ніяких ліній. Повторні нові перед спалахом мають неперервний спектр із розподілом, що вказує на високу температуру. Крім того, наявні слабкі лінії НеІІ та водню[10].

Передмаксимальний спектр

Знімки спектрів під час кінцевого підйому отримано для семи нових. У більшості з них спостерігається досить розмитий спектр поглинання без сильних емісійних ліній. З наближенням до максимуму спектр поглинання зазвичай стає більш сильним та чітким, і завжди робиться більш пізнім. Усі спектри типу B швидко перетворювались на спектри типу А задовго до настання максимуму блиску. Спектри в максимумі лежать у межах від A0 до F8. Взагалі, спектри поблизу максимуму схожі на спектри зір-надгігантів, як-от α Cyg та ε Aur. Усі емісійні лінії зі збільшенням яскравості зникають у неперервному спектрі. Таким чином, у максимумі емісії видно лише Нα. Після максимуму блиску передмаксимальний спектр зберігається дуже недовго, і зникає, коли відбувається післямаксимальне перетворення[10].

Головний спектр

Перехід до типового спектра нової, що складається з яскравих і темних ліній, відбувається незабаром після максимуму блиску. Це перетворення зазвичай триває приблизно 24 години. Спектр у максимумі — це спектр надгіганта типу А чи F зі зсувом у короткохвильовий бік, який відповідає швидкості від 60 км/с (RR Pic) до 1300 км/с (V603 Aql). Лінії поодинокі, можуть бути або розмитими, або чіткими. Із початком спадання блиску з'являється друга система ліній, що мають більший зсув у короткохвильовий бік. Вона швидко підсилюється й стає спочатку рівною, а потім і перевищує за інтенсивністю передмаксимальний спектр, який у цей час послаблюється. Ця абсорбційна система являє собою головний спектр. Одночасно з його появою по всьому спектрі з'являються яскраві лінії. Найсильнішими є лінії водню й Ca II, наступні за яскравістю — Na I та Fe II. Вони симетрично розширені відносно свого нормального положення, а лінії поглинання головного спектра лежать біля їх короткохвильового краю.

Одразу після появи головного спектра в ньому починаються зміни. Деякі лінії швидко зникають, наприклад Mg II, O I, Si I, Si II. Лінії Fe II та Ti II зберігаються досить довго. Найдовше залишаються видимими лінії бальмерівської серії водню та Са ІІ. В емісійному спектрі після максимуму з'являються авроральні лінії [O I] та [N II]. Взагалі ж усі емісійні лінії неперервно послаблюються[10].

Дифузно-іскровий спектр

Перш ніж головний спектр встигає значно ослабнути, з'являється нова система ліній зі зсувом у короткохвильовий бік, який вдвічі більший, ніж зсув головного спектра (550—950 км/с у DQ Her та 2200 км/с у V603 Aql). Цей дифузно-іскровий спектр спочатку складається з широких розмитих ліній водню, Ca II, Mg II, Fe I, Na I, O I.

Повільні нові зазвичай мають багатший дифузно-іскровий спектр, у якому спостерігаються лінії Ti II і Cr II. Дифузно-іскрова система досягає найбільшої яскравості, коли блиск зорі стає на 2m меншим за максимальний, а потім слабшає. Лінії цієї системи за інтенсивністю, особливо у повільних нових, значно сильніші за лінії головного спектра; у деяких швидких нових у дифузно-іскровому спектрі були помітні лише лінії водню. У найшвидших нових дифузно-іскровий спектр існує лише кілька днів, а у повільних — декілька тижнів. Під час його зникнення лінії зазвичай стають різкими та розпадаються на компоненти. При цьому деякі компоненти можуть зникати і знов з'являтися, крім того, іноді бувають помітні їх швидкі зсуви. Флуктуації блиску цих нових зазвичай супроводжуються сильними змінами в інтенсивності й положенні ліній поглинання дифузно-іскрового спектра. Найсильніші лінії поглинання цієї системи супроводжуються емісією. Як і смуги головного спектра, емісійні лінії дифузно-іскрового спектра симетрично розширені, і лінії поглинання лежать поблизу їх короткохвильового краю. Під час найбільшої інтенсивності смуги водневої емісії дифузно-іскрового спектра можуть зрівнятися за яскравістю зі смугами головного спектра. Характер дифузно-іскрового спектра свідчить про наявність турбулентності або великого розкиду у швидкостях.

При зникненні цієї системи ліній передусім зникає лінія Mg II, а водневі лінії перестають спостерігатися, коли блиск стає на 3m меншим за максимальний[10].

Оріонів спектр

Рання стадія

Приблизно в момент найбільшої інтенсивності дифузно-іскрового спектра починають з'являтися лінії поглинання Не І, N II, O II зі зсувом, зазвичай рівним зсуву ліній дифузно-іскрового спектра, але часто — значно більшим. Іноді з'являються водневі лінії з таким самим зсувом. У V603 Aql швидкість, що відповідала оріоновому спектру, становила 2700 км/с, тоді як швидкість за дифузно-іскровим спектром була 2200 км/с. Оріонів спектр поглинання досягає максимальної інтенсивності приблизно в той час, коли зникає дифузно-іскровий спектр. Лінії оріонового спектра дещо розмиті, на відміну від ліній дифузно-іскрового спектра вони з часом не стають більш різкими й у більшості нових не розщеплюються на компоненти. Коли оріонів спектр досягає максимуму інтенсивності, особливо виділяються численні групи ліній N II i O II.

Лінії поглинання оріонового спектра супроводжуються розмитими й безструктурними лініями випромінення. Найбільше виділяється широка смуга з центром біля 464 нм, яка в момент появи, скоріше за все, є блендою ліній N II i O II, але пізніше, коли збудження збільшується, вони поступаються місцем лініям N III. Ще пізніше, розмита емісійна смуга на цій ділянці зумовлена, ймовірно, N V. Взагалі, розпливчаста оріонова емісія більш характерна для повільних нових, ніж для швидких, у яких ширина смуг настільки велика, що вони мають малий контраст на тлі неперервного спектра. Оріонові лінії зазнають великих зсувів, які корелюють із повторними змінами блиску[10].

Стадія 4640

Численні лінії N II і O II поступово зникають і з'являються дві лінії N III (λ4097 і λ4103) й одночасно з ними — широкі розмиті емісійні смуги поблизу λ4640 і λ4100. З моменту їх появи (блиск у цей час на 3,5m менший за максимальний) нова вступає в стадію 4640. До цього часу дифузно-іскровий спектр зникає, а від головного абсорбційного спектра залишаються лише водневі лінії. Стадія 4640 приблизно збігається за часом із перехідним періодом на кривій блиску. У цей час спектр із зоряного перетворюється на небулярний[10].

Небулярна стадія

Зі зменшенням блиску нової збудження за лініями головного емісійного спектра зростає, а будова головного спектра змінюється. Дуже рано з'являються заборонені лінії О І та N II. Лінії Не І, N II, N III та Не ІІ при появі мають таку ж ширину й структуру, як і лінії водню. Коли зникає дифузійна смуга N III поблизу λ4640, що пов'язана з оріоновим спектром, стають помітними смуги головного спектра, зумовлені випромінюванням того самого N III. Коли блиск стає на 4m меншим за максимальний, вперше стають помітними емісійні лінії [O III] і [Ne III]. Вони посилюються порівняно з дозволеними лініями, аж поки не стають найяскравішими (відносно інших ліній, адже в цілому яскравість зменшується). Небулярна стадія розвивається повністю, коли блиск стає на 7m меншим за максимальний. Спектр нової в цей час дуже схожий на спектр планетарної туманності, за винятком ширини ліній. Однак від одної нової до іншої спостерігаються значні відмінності, які не можна пояснити неповнотою даних або різницею у збудженнях[10].

Спектр після спалаху

Якщо під час небулярної стадії застосувати довгі експозиції, ціною великої перетримки сильних небулярних емісійних ліній можна отримати на знімку неперервний спектр. Спектрограми нових та їх небулярних оболонок, що розширюються, показують, що емісійні смуги утворюються головним чином в оболонці, яка розлітається, тоді як неперервний спектр випромінюється центральною зорею. Оскільки туманність продовжує слабшати, її випромінювання, накладене на неперервний спектр, стає все менш інтенсивним, і врешті решт залишається лише спектр зорі[10].

Неперервний спектр нових у мінімумі й поблизу нього сягає далеко в ультрафіолетовий бік, що вказує на високу температуру зорі. Деякі спектри мають широкі лінії поглинання, схожі на лінії поглинання в білих карликів (нові WZ Sge, DI Lac). У спектрах деяких нових не вдається знайти ні ознак емісії, ні поглинання. Однак, багато нових мають відносно вузькі емісійні лінії водню, Не ІІ і С ІІІ. Ширина цих ліній становить 10—20 ангстрем[10].

Фізичні процеси

На ранніх стадіях спалаху спектральні лінії зсуваються у фіолетовий бік, що свідчить про швидке розширення оболонки. Збільшення світності відбувається за рахунок збільшення поверхні, втім, оболонка залишається непрозорою. Внаслідок розширення густина оболонки зменшується. Нова досягає максимуму блиску коли оболонка стає прозорою для випромінювання з глибших і гарячіших шарів[7].

Після цього поряд із лініями поглинання (які утворюються в оболонці) з'являються інші системи ліній[7]:

  • від пізніших викидів, які мають більшу швидкість та наздоганяють основну оболонку;
  • від інших частин оболонки, які не проєктуються на зорю й стали помітними внаслідок часткової прозорості оболонки. Їх світіння в емісійних лініях зумовлено ударами енергетичних електронів.

На пізніших стадіях утворюється типовий спектр газової туманності: порівняно яскраві емісійні лінії іонів (OIII, HeII, NeIII, CIV) зумовлені поглинанням в оболонці ультрафіолетової складової, яка випромінюється зорею, та перевипромінюванням, яке відбувається переважно у видимому світлі. Внаслідок взаємодії оболонки з потоками газу, що наздоганяють її, та з міжзоряним середовищем оболонка стає неоднорідною. Ця неоднорідність зростає з часом[7].

Оболонка поступово розширюється, слабне й врешті-решт зливається з міжзоряним середовищем[7].

Механізм спалаху

Схематичний процес акреції на білий карлик багатої на водень речовини зорі-супутника

Наразі астрономи практично не мають розбіжностей щодо фізичних процесів спалаху нових. Вважається, що спалах відбувається на поверхні білого карлика, що входить до тісної подвійної системи. Білий карлик — це зоря, що майже позбавлена термоядерного палива: її водень вже «вигорів» у процесі еволюції. Проте коли з сусідньої компоненти (зазвичай, гіганта або надгіганта, що заповнює свою порожнину Роша), відбувається перетікання речовини, це призводить до накопичення багатої на водень речовини на поверхні білого карлика. Коли біля підніжжя водневого шару температура та густина зросте до рівня, достатнього для початку термоядерних реакцій (вважається що для цього на поверхні білого карлика має накопичитися близько 1030 г багатої на водень речовини[7]), «воднева бомба» на поверхні білого карлика вибухає[5].

Вибухоподібний характер спалаху пояснюється тим, що електронний газ на поверхні білого карлика перебуває у виродженому стані. Після досягнення температури кілька мільйонів Кельвінів розпочинаються ядерні реакції водневого циклу, які призводять до розігрівання водневого шару. За звичайних умов це призвело б до збільшення тиску та розширення зорі, що викликало б зменшення густини та, відповідно, швидкості ядерних реакцій — система досягла б рівноваги. Проте у виродженому стані речовини збільшення температури не призводить до збільшення тиску, й розширення не відбувається. Однак швидкість перебігу ядерних реакцій зростає з температурою, виділення енергії збільшується й температура зростає ще більше — реакція стає ланцюговою. Коли температура сягає 15—18 млн K розпочинаються ядерні реакції вуглецево-азотного циклу. Зростання енерговиділення триває доки не відбудеться зняття виродженого стану (за температури понад 100 млн. K[джерело?]). Тоді оболонка стрімко розширюється.

Спалах нової спричиняє скидання оболонки (зі швидкістю близько 1000 км/сек), яку згодом іноді можна спостерігати у вигляді туманності. Маса скинутої оболонки — менше 0,001 маси Сонця. Отже, спалахнувши, зоря не руйнується повністю. Після скидання оболонки можливий процес її повторного накопичення[7]. Таким чином, спостережувана кількість спалахів у нашій Галактиці (1012) може бути пояснена існуванням порівняно невеликої кількості (~109) тісних подвійних[7].

Ядерні процеси в нових зорях

На початку спалаху нової, домінують реакції протон-протонного циклу. Коли температура досягає 15—18 млн K основної ролі набувають реакції CNO-циклу:

(12C(p, γ) → 13N(β+) → 13C(p, γ) → 14N(p, γ) → 15O).

Із підвищенням температури, час захоплення протона ядром 13N стає меншим, ніж час відповідної реакції β-розпаду, що призводить до збільшення кількості реакцій гарячого CNO-циклу, як-от[джерело?]:

Коли температура перевищує ∼2·107 K, в оболонці білого карлика знімається виродження електронного газу й починається конвекція, яка переносить синтезовані в ході CNO-циклу нестабільні 13N, 14, 15O і 17F до зовнішніх холодніших шарів оболонки. Енергія від їх β-розпаду іде на розширення і скидання оболонки. Крім того, великий вміст 13N, 14,15O і 17F, синтезованих під час спалаху, призводить до підвищеного вмісту 13C, 15N і 17O в скинутій оболонці.

У спалаху нової зорі також синтезуються ізотопи інших хімічних елементів із масовим числом A < 40, які пов'язані сотнями різних реакцій. Переважно під час спалаху відбуваються реакції приєднання протона і β-розпаду, без помітного впливу реакцій захоплення нейтронів чи α-частинок.

Гідродинамічні моделі спалаху й спостереження за хімічним складом скинутих оболонок вказують на те, що ланцюжки реакцій у новій зорі доходять до 40Ca, а важчі елементи в них не синтезуються[9].

Джерела

  1. а б в Нові зорі // Астрономічний енциклопедичний словник / за заг. ред. І. А. Климишина та А. О. Корсунь. — Львів : Голов. астроном. обсерваторія НАН України : Львів. нац. ун-т ім. Івана Франка, 2003. — С. 322. — ISBN 966-613-263-X.
  2. Hsi Tse-tsung A new catalog of Novae recorded in chinese and japanese chronicles 1957 (англ.)
  3. Hilmar W. Duerbeck Novae: an historical perspective Cambridge University Press, p.5-6 (англ.)
  4. а б Ю. П. Псковский (1985). Новые и сверхновые звезды. М. (рос.)
  5. а б в г д е ж Н. Н. Самусь Переменные звезды Глава 3. Взрывные и новоподобные переменные звезды Учебное пособие по курсу «Астрономия» (рос.)
  6. Ю. П. Псковский (1985). Глава III. Обыкновенные новые звезды. Новые и сверхновые звезды. М. (рос.)
  7. а б в г д е ж и к В. Г. Горбацкий. Новые звезды // Физика Космоса. — 1986.(рос.)
  8. Классификация переменных звезд в соответствии с IV изданием ОКПЗ Взрывные и новоподобные переменные [Архівовано 2022-06-25 у Wayback Machine.] (рос.)
  9. а б Jose J. (2016). Stellar Explosions: Hydrodynamics and Nucleosynthesis. Series in Astronomy and Astrophysics. CRC Press. с. 161. ISBN 978-1-4398-5308-5.
  10. а б в г д е ж и к Дж. Л. Гринстейн [J.L. Greenstein], ред. (1963) [University of Chicago press, 1960]. Звездные атмосферы [Stellar atmospheres]. M.


Read other articles:

The MummySutradaraStephen SommersProduserSean DanielJames JacksDitulis olehKevin Jarre (story)Lloyd Fonvielle (story)Stephen Sommers (script/story)PemeranBrendan FraserRachel WeiszJohn HannahArnold VoslooPenata musikJerry GoldsmithSinematograferAdrian BiddlePenyuntingBob DucsayDistributorUniversal PicturesTanggal rilis7 Mei, 1999 (AS)Durasi124 menitNegara Amerika SerikatBahasaInggrisAnggaran$80,000,000 USD (perkiraan)Pendapatankotor$415,885,488 (dunia)SekuelThe Mummy ReturnsIMDbInf...

 

 

Cet article est une ébauche concernant l’anatomie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Nerf périnéalDétailsBranche de Nerf pudendalInnerve Muscle transverse profond du périnée (en), muscle transverse superficiel du périnée (en), muscle bulbo-spongieux, Muscle ischio-caverneuxIdentifiantsNom latin Nn. perinealesTA98 A14.2.07.039TA2 6556FMA 21866modifier - modifier le code - modifier Wikidata...

 

 

Pour les articles homonymes, voir Inigo. Cet article est une ébauche concernant un coureur cycliste espagnol. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Iñigo González de HerediaInformationsNaissance 15 mars 1971 (53 ans)Vitoria-GasteizNationalité espagnoleÉquipes professionnelles 1994Euskadi-Petronor1995-1997Euskadi1998-1999Vitalicio Seguros-Grupo GeneraliPrincipales victoires 1 championnat Cham...

Karate padaPekan Olahraga Nasional XIX Kata Putra Putri   Perorangan     Perorangan     Beregu Beregu Kumite Putra Putri   Beregu     Beregu     55 kg 50 kg 60 kg 55 kg 67 kg 61 kg 75 kg 68 kg 84 kg +68 kg +84 kg Karate nomor Kumite 55 kg putri pada Pekan Olahraga Nasional XIX dipertandingkan pada 20 September 2016[1] di Sasana Budaya Ganesha, Institut Teknologi Bandung, Kota Bandung, Jawa Barat. Pertandingan karate menggunakan s...

 

 

550 굽은다리 (강동구민회관앞)Gubeundari(Gangdong Community Center) Station signKorean nameHangul굽은다리역Hanja굽은다리驛Revised RomanizationGubeundari-yeokMcCune–ReischauerKubŭndari-yŏk General informationLocation1572 Yangjaedaero Jiha, 345-12 Myeongil 1-dong, Gangdong-gu, Seoul[1][2]Operated bySeoul MetroLine(s)     Line 5Platforms2Tracks2ConstructionStructure typeUndergroundHistoryOpenedNovember 15, 1995[1]Services ...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Me...

Railway station in Rajasthan, India This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gandhinagar Jaipur railway station – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this template message) Gandhi Nagar Jaipur Indian Railways stationGeneral informationLocationTonk R...

 

 

Daniel Arismendi Nazionalità  Venezuela Altezza 180 cm Peso 74 kg Calcio Ruolo Attaccante Termine carriera 2016 Carriera Giovanili 200?-2003 Mineros Squadre di club1 2003 Mineros? (?)2004-2005 UA Maracaibo? (?)2005 Dep. Italmaracaibo? (?)2006 Carabobo21 (14)2006-2007 Mineros27 (16)2008 Atlante10 (1)2008 UA Maracaibo17 (11)2008-2010 Deportivo Táchira43 (17)2010-2012 Dep. Anzoátegui45 (28)2012-2013 Dep. Antofagasta30 (12)2013 ...

 

 

Romanian politician Teodor BaconschiBaconschi in 2011Minister of Foreign AffairsIn office23 December 2009 – 23 January 2012PresidentTraian BăsescuPreceded byCătălin PredoiuSucceeded byCristian Diaconescu Personal detailsBorn (1963-02-14) February 14, 1963 (age 61)Bucharest, RomaniaProfessionDiplomat Teodor Baconschi (Romanian pronunciation: [te.oˈdor baˈkonski]; also spelled Baconsky or Baconski; born 14 February 1963) is a Romanian politician. He was the Minister...

Pour les articles homonymes, voir Ferrari. Enzo FerrariEnzo Ferrari à Monza en 1967.BiographieNaissance 18 février 1898Modène (Italie)Décès 14 août 1988 (à 90 ans)Modène (Italie)Sépulture Cimetière de San Cataldo (d)Nom de naissance Enzo Anselmo Giuseppe Maria FerrariSurnom Il CommendatoreNationalité  ItalienneActivités Entrepreneur, pilote automobile, industrielPériode d'activité à partir de 1918Conjoint Laura Dominica Garello (d) (de 1923 à 1978)Enfants Dino Ferra...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此生者传记条目需要补充更多可供查證的来源。 (2015年9月18日)请协助補充可靠来源,无法查证的在世人物内容将被立即移除。 此條目過於依赖第一手来源。 (2015年9月18日)请補充第二手及第三手來源,以改善这篇条目。 此條目需要补充更多来源。 (2015年9月18日)请协助補充多方面可靠来源以改善这篇条�...

 

 

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

Front Persatuan Nasional untuk Kamboja yang Independen, Netral, Damai, dan Kooperatif រណសិរ្សបង្រួបបង្រួមជាតិដើម្បីកម្ពុជាឯករាជ្យ អព្យាក្រិត សន្តិភាព និងសហប្រតិបត្តិការSingkatanFUNCINPECPresidenNorodom ChakravuthWakil PresidenNorodom Rattana Devi[1]Sekretaris JenderalPich SochethaPendiriNorodom SihanoukDibentuk21 Maret 1981; 43 t...

 

 

  لمعانٍ أخرى، طالع معركة الناصرية (توضيح). معركة الناصرية جزء من احتلال العراق 2003 عربة الهجوم البرمائية الأمريكية حطّمت في الناصرية معلومات عامة التاريخ 23–29 مارس 2003 البلد العراق  الموقع الناصرية، العراق31°03′00″N 46°16′00″E / 31.05°N 46.26666667°E / 31.05; 46.26666667   �...

 

 

International cricket tour The Sri Lanka national cricket team toured England from 8 May to 5 July 2016 for a three-match Test series, a five-match One Day International (ODI) series and a one-off Twenty20 International (T20I) against the England cricket team. England won the Test series 2–0, the ODI series 3–0 and won the one-off T20I match by 8 wickets. They also played two first-class matches against Essex and Leicestershire prior to the Test series, and two ODI matches against Ireland...

Town in Victoria, AustraliaBeulahVictoriaMain street of Beulah, 2012BeulahCoordinates35°56′17″S 142°25′12″E / 35.93806°S 142.42000°E / -35.93806; 142.42000Population329 (2016 census)[1]Postcode(s)3395Elevation100 m (328 ft)Location 395 km (245 mi) NW of Melbourne 219 km (136 mi) S of Mildura 38 km (24 mi) north of Warracknabeal 94 km (58 mi) north of Horsham LGA(s)Shire of YarriambiackState ele...

 

 

County of Romania County in Sud-Vest, RomaniaOlt County Județul OltCounty FlagCoat of armsCountryRomaniaDevelopment regionSud-VestHistorical regionWallachiaCapitalSlatinaGovernment • President of the County BoardMarius Oprescu [ro] (PSD) • PrefectStefan Nicolae [ro]Area • Total5,498 km2 (2,123 sq mi) • Rank22ndPopulation (2021-12-01)[1] • Total383,280 • Rank19th ...

 

 

4th-century BC Celtic princely chariot burial site Waldalgesheim chariot burialWaldalgesheimer FürstengrabJewelry from the burial siteLocation in GermanyLocationWaldalgesheim, GermanyCoordinates49°57′19″N 7°49′47″E / 49.955156°N 7.829601°E / 49.955156; 7.829601TypeChariot burial siteHistoryFounded4th century BCCulturesCelts The Waldalgesheim chariot burial (German: Waldalgesheimer Fürstengrab) was a 4th-century BC Celtic princely chariot burial site in Wa...

Swiss publishing house Walter VerlagAlternative Bank Schweiz in Olten, the former building of Walter VerlagFounded1916FounderOtto WalterSuccessorOtto F. WalterCountry of originSwitzerlandHeadquarters locationOlten, Solothurn, ZürichKey peopleOtto Walter, Otto F. WalterNonfiction topicspsychology, tourism Walter Verlag was a publishing house founded in 1916 in Olten, Switzerland. In 1994, it was taken over by the Patmos publishing house, and later used again under the label of the Patmos grou...

 

 

توقيت الفلبين (بالفلبينية: Pamantayang Oras ng Pilipinas يختصر: PST).[1][2][3] هو التوقيت الرسمي في الفلبين المستخدم لتحديد موقع الفلبين من الخارطة الزمنية. تم رفع قرار اعتماد التوقيت الفلبيني في 2 ديسمبر، 1978، ونفذ في 1 يناير، 1983. تقع الفلبين بين 116° 40' و126° 34' شرقا، مما يجعلها تحت ال...