Ши Хун

Ши Хун
кит. 石弘
2-й Правитель Пізньої Чжао
333 — 334
Попередник: Ши Ле
Спадкоємець: Ши Ху
 
Народження: 313
Смерть: 334
Країна: Династія Пізня Чжао[1]
Батько: Ши Ле[1]
Мати: Empress Dowager Chengd

Ши Хун (спрощ.: 石弘; піньїнь: Shí Hóng; 313-329) — імператор Пізньої Чжао періоду Шістнадцяти держав.

Життєпис

Був другим сином Ши Ле. Офіційно проголошений спадкоємцем престолу після смерті свого брата Ши Сіна. Це не сподобалось генералу Ши Ху, який розпочав готувати захоплення влади.

Восени 333 року Ши Ле помер, і Ши Хун одразу ж наказав стратити своїх противників при дворі. Ши Хун навіть запропонував Ши Ху зайняти трон, але той відмовився та змусив Ши Хуна стати імператором, а йому надати титул «Вейського князя» та поставити на пост голови уряду. Після того, як було викрито кілька змов проти Ши Ху, Ши Хун особисто прийшов до нього та знову запропонував йому трон та імператорську печатку, втім генерал відмовився, натякнувши, що якщо він захоче сісти на престол, то зробить це самотужки, а не на прохання Ши Хуна.

Невдовзі Ши Ху звинуватив Ши Хуна в порушенні жалоби та повалив його з трону, надавши титул «Хайянського князя», а престол зайняв сам. Потім Ши Хун, його мати і брати (тобто всі нащадки Ши Ле) були страчені за наказом Ши Ху.

Джерела

  1. а б China Biographical Database

Read other articles:

Highest appeals court of Afghanistan Supreme Court of AfghanistanPashto: ستره محكمه Dari: دادگاه عالیLogo of the Supreme Court of AfghanistanEstablished15 August 2021 (2021-08-15) (current form)JurisdictionAfghanistanLocationKabul[1]Composition methodAppointment by supreme leaderAuthorized by1998 dasturWebsitesupremecourt.gov.af/enChief JusticeCurrentlyAbdul Hakim HaqqaniSince15 August 2021 Politics of Afghanistan Constitution Taliban Islamic Movement...

 

  Negara yang telah menerapkan sistem metrik   Negara yang belum menerapkan sistem metrik secara resmi (Amerika Serikat, Myanmar dan Liberia) Sistem metrik ada untuk semua orang kapanpun. (Condorcet, 1791). Empat alat ukur sehari-hari yang telah dikalibrasi metrik: meter ukur dikalibrasi dalam sentimeter, termometer dikalibrasi dalam derajat Celsius, timbangan kilogram, dan multimeter listrik yang mengukur volt, ampere, dan ohm. Sistem metrik adalah sistem pengukuran desim...

 

Overview of the legality and prevalence of abortions in the U.S. state of Minnesota Abortion in Minnesota is legal at all stages of pregnancy.[1][2] The Minnesota Supreme Court ruled the Minnesota Constitution conferred a right to an abortion in 1995 and the DFL-led Minnesota Legislature passed and Minnesota Governor Tim Walz signed into law a bill in 2023 to recognize a right to reproductive freedom and preventing local units of government from limiting that right, making Min...

Korps unta Utsmaniyah di Beersheba pada Serangan Suez Pertama dalam Perang Dunia I, 1915. Kavaleri unta (Prancis: méharistes, diucapkan [meaʁist]), adalah sebuah sebutan generik untuk pasukan bersenjata yang memakai unta sebagai alat transportasi. Terkadang prajurit atau pasukan dari jenis ini juga bertarung dari punggung unta dengan tombak, panah atau senapan. Kavaleri unta adalah unsur umum dalam perang gurun sepanjang sejarah di Timur Tengah, karena tingkat adaptabilitas yang ti...

 

Unincorporated community in Georgia, U.S. Laurens Hill is an unincorporated community in Laurens County, in the U.S. state of Georgia.[1][2] History Engraved Plaque A post office called Laurens Hill was established in 1835 and remained in operation until 1903.[3] The community was named after a nearby plantation estate.[4] The home built by David Harvard in 1835 at the crossroads of Blackshear Ferry Rd (GA Hwy 26 today) and Laurens Hill Church Rd[5] was...

 

Polish/German embryologist, physiologist, and neurologist For his grandson, see Robert Remak (mathematician). Robert RemakRemak c. 1850-1855Born12 July 1815Posen, PrussiaDied29 August 1865 (1865-08-30) (aged 50)Bad Kissingen, BavariaAlma materUniversity of BerlinKnown forEctoderm, mesoderm and endodermScientific careerFieldsEmbryologyPhysiologyNeurologyDoctoral advisorFerdinand Georg FrobeniusHermann Amandus Schwarz Robert Remak (26 July 1815 – 29 August 1865) was ...

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (October 2023) African Americans in PhiladelphiaAfrican American Museum in PhiladelphiaTotal population1,256,908[1]Regions with significant populationsNorth Philadelphia west of Germantown Avenue, Point Breeze in South Philadelphia, West Philadelphia and parts of Southwest Philadelphia[2]LanguagesPhiladelphia English, African-American Vernacular English, ...

 

سان فرانسيسكو كرونيكلSan Francisco Chronicle (بالإنجليزية) الشعارمعلومات عامةالنوع يوميةتصدر كل 1 يوم بلد المنشأ  الولايات المتحدة[1][2][3] التأسيس 1865 القطع القطع الكبير الثمن USD 0,75 يومي السبت والاثنين ، USD 1,50 الأحدموقع الويب sfchronicle.com (الإنجليزية) شخصيات هامةالمالك شركة ه...

 

Kaiyuan Tongbao(開元通寳)Dinasti Tang(Tiongkok)[a]Nilai1 wénKomposisiPerunggu,[b] timbal, perunggu putih, besi,[c] perak, atau emas[1]Tahun pencetakan621–907DepanDesainKaiyuan Tongbao (開元通寳)DesainerOuyang Xun (歐陽詢)BelakangDesainBiasanya kosong, kadang-kadang dengan bekas paku, bulan sabit, titik, atau awan, sementara uang koin Huichang Kaiyuan Tongbao cenderung memiliki tanda percetakan uang logam (lihat di bawah). Kaiyuan Tongbao (Hanzi se...

645 military campaign between Goguryeo and Silla First conflict of the Goguryeo–Tang WarPart of the Goguryeo–Tang WarMap of the first conflict of the Goguryeo–Tang War in 645.Date645–648LocationLiaodong Peninsula, Korean Peninsula, Bohai Sea, and Yellow SeaResult Goguryeo victory[1][2][3][4]Belligerents TangEastern GöktürksSilla GoguryeoMoheCommanders and leaders Emperor TaizongLi ShijiLi Daozong (WIA)Zhangsun WujiZhang LiangYuchi JingdeQibi Heli...

 

Quella strana ragazza che abita in fondo al vialeJodie Foster in una scena del filmTitolo originaleThe Little Girl Who Lives Down the Lane Paese di produzioneCanada, Francia Anno1976 Durata94 min e 96 min Rapporto16/9 Generedrammatico, thriller RegiaNicolas Gessner SoggettoLaird Koenig (racconto) SceneggiaturaLaird Koenig ProduttoreZev Braung FotografiaRené Verzier MontaggioYves Langlois MusicheChristian Gaubert Interpreti e personaggi Jodie Foster: Rynn Jacobs Martin Sheen: Frank Ha...

 

Trượt tuyết băng đồngTrượt tuyết băng đồng tại phía tây Na Uy.Biệt danhXC skiingĐặc điểmHình thứcNgoài trời hoặc trong nhà (trong các hầm trượt -Ski tunnel)Trang bịván trượt tuyết, gậy và giầy.Hiện diệnOlympictừ năm 1924 Trượt tuyết băng đồng hay trượt tuyết việt dã là một môn thể thao trượt tuyết mà những người tham gia sử dụng ván trượt và gậy trượt để tự đẩy mình đi b�...

Roman quaestor and general Marcus Marius was a quaestor of the Roman Republic in 76 BC[1] and proquaestor under Quintus Sertorius's government in exile in Spain. Marius was sent by Sertorius to Mithradates of Pontus as an advisor and military commander in the Third Mithridatic War. He is named as or more likely confused with a Varius in Appian.[2] Family and political connections No connection has been established between this Marius and Gaius Marius or the other contemporary ...

 

Julia Marlowe as Mary Tudor in When Knighthood Was in Flower When Knighthood Was in Flower is a play in four acts by Paul Kester. It is based on the 1898 novel of the same name by Charles Major. The work premiered on Broadway at the Criterion Theatre on January 14, 1901. It ran for a total of 176 performances; closing in June 1901.[1] The original production was produced by Charles Frohman and used sets by Ernest Albert, Frank E. Gates and Edward A. Morange. The costumes were designe...

 

Geometric arrangements of points, foundational to Lie theory This article is about root systems in mathematics. For plant root systems, see Root. Lie groups and Lie algebras Classical groups General linear GL(n) Special linear SL(n) Orthogonal O(n) Special orthogonal SO(n) Unitary U(n) Special unitary SU(n) Symplectic Sp(n) Simple Lie groups Classical An Bn Cn Dn Exceptional G2 F4 E6 E7 E8 Other Lie groups Circle Lorentz Poincaré Conformal group Diffeomorphism Loop Euclidean Lie algebras Lie...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) كأس العراق 1991–92معلومات عامةالرياضة كرة القدم الفترة 1991-1992 فترة سنة واحدة البلد العراق الفرق المشاركة 42 �...

 

包公毅字朗生、朗孫、德寶號天笑、包山出生包清柱(1876-02-26)1876年2月26日逝世1973年10月30日(1973歲—10—30)(97歲) 英屬香港筆名包天笑子女包可永 包公毅(1876年2月26日—1973年10月30日),初名清柱,字朗生、朗孫、德寶、號天笑,別號包山,苏州府吴县人,20世纪中国通俗文学作家,鸳鸯蝴蝶派作家。 生平 包天笑幼年时,与賴豐熙、谭泰来的家庭曾同住苏州城西刘家浜...

 

Juan Capra Nazionalità Cile GenereFolkNueva Canción Chilena[1] Periodo di attività musicale? – 1996 Strumentovoce, chitarra, charango EtichettaBAM, Cedi, Barclay, Le Chant du Monde, Album pubblicati5 Studio5 Modifica dati su Wikidata · Manuale Juan Capra (Santiago del Cile, 12 aprile 1938[1] – Santiago del Cile, aprile 1996[1]) è stato un pittore, cantautore e poeta cileno. Attivo tra Santiago del Cile, Parigi, Roma e New York, fu ...

Painting by Philippe de Champaigne Louis XIII Crowned by Victory (1635) by Philippe de Champaigne Louis XIII Crowned by Victory is a 1635 oil on canvas painting by Philippe de Champaigne.[1][2] Probably commissioned by Cardinal Richelieu, it shows Louis XIII, King of France, crowned by a personification of Victory to mark his forces' victory in the Siege of La Rochelle. Since 1796 it has been in the Louvre, in Paris.[3][4] References ^ (in French) Catalogue ent...

 

Governo Cossiga IFoto ufficiale scattata dopo la cerimonia di giuramento al Palazzo del Quirinale Stato Italia Presidente del ConsiglioFrancesco Cossiga(DC) CoalizioneDC, PSDI, PLI LegislaturaVIII Legislatura Giuramento5 agosto 1979 Dimissioni19 marzo 1980 Governo successivoCossiga II4 aprile 1980 Andreotti V Cossiga II Il Governo Cossiga I è stato il trentaseiesimo esecutivo della Repubblica Italiana, il primo dell'VIII legislatura. Il governo rimase in carica dal 5 agosto 1979[1&#...