Прямокутний дельтоїд — це дельтоїд (чотирикутник, який має дві пари суміжних сторін однакової довжини), який можна вписати в коло[1]. Тобто це дельтоїд з описаним колом (вписаний дельтоїд). Прямокутний дельтоїд є опуклим чотирикутником і має два протилежні прямі кути[2].
В описаному чотирикутнику (тобто, який має вписане коло), чотири відрізки між центром вписаного кола і точками дотику з чотирикутником розбивають чотирикутник на чотири прямокутні дельтоїди.
Особливий випадок
Особливим випадком прямокутних дельтоїдів є квадрати, в яких діагоналі мають однакову довжину і вписане та описане кола концентричні.
Опис
Дельтоїд є прямокутним дельтоїдом тоді й лише тоді, коли він має описане коло (за визначенням). Це еквівалентно тому, що дельтоїд має два протилежні прямі кути.
Формули
Оскільки прямокутний дельтоїд можна розбити на два прямокутні трикутники, наведені далі формули легко виходять з добре відомих властивостей прямокутних трикутників. У прямокутному дельтоїді ABCD, де два протилежні кути B і D прямі, два інші кути можна обчислити з
,
де a = AB = AD і b = BC = CD. Площа прямокутного дельтоїда дорівнює
Іноді прямокутний дельтоїд визначають як дельтоїд зі щонайменше одним прямим кутом[4]. Якщо є лише один прямий кут, він має бути між двома сторонами рівної довжини. І тут не діють формули, наведені вище.
Michael de Villiers. Some Adventures in Euclidean Geometry. — Key Curriculum Press, 2009. — ISBN 978-0-557-10295-2.
Michael de Villiers. The role and function of a hierarchical classification of quadrilaterals // For the Learning of Mathematics. — 1994. — Т. 14, вип. 1.