У лінійній алгебрі, матриця Гессенберга — це такий тип квадратної матриці, що «майже» трикутний. Щоб бути точним, верхня матриця Гессенберга має нульові елементи нижче першої піддіагоналі, а нижня матриця Гессенберга має нульові елементи вище першої наддіагоналі.[1] Вони названі на честь Карла Гессенберга.[2]
Наприклад:
є верхньою матрицею Гессенберга і
— нижньою.
Комп'ютерне програмування
Багато алгоритмів лінійної алгебри потребують значно менше ресурсів для обчислення у разі застосування до трикутних матриць, і це часто відбувається і з матрицями Гессенберга. Якщо обмеження задачі не дозволяють звести до трикутною форми, то можна спробувати звести до форми Гессенберга.
Властивості
Добуток матриці Гессенберга з трикутною матрицею є матрицею Гессенберга. Точніше, якщо A є верхньою матрицею Гессенберга, а T є верхньою трикутною матрицею, тоді AT і TA будуть верхніми матрицями Гессенберга.
Якщо матриця одночасно верхня і нижня Гессенберга, тоді вона тридіагональна матриця.
Джерела
Примітки