Данилівка (Березанський район)
|
Read other articles:
Oscar Stanton De Priest Oscar Stanton De Priest (9 Maret 1871 – 12 Mei 1951) adalah seorang politikus dan advokat hak sipil Amerika Serikat dari Chicago. Sebagai anggota Partai Republik Illinois, ia adalah Afrika Amerika pertama yang terpilih dalam Kongres pada abad ke-20. Pada tiga masa jabatannya, ia menjadi satu-satunya Afrika Amerika yang menjabat dalam Kongres. Ia menjabat sebagai anggota DPR dari 1929 sampai 1935. Referensi Daftar pustaka Day, S. Davis. Herbert Hoover an...
Artikel ini memuat Surat Batak. Tanpa dukungan multibahasa, Anda mungkin akan melihat tanda tanya, tanda kotak, atau karakter lain selain dari Surat Batak. Surat Batak [a]Surat na Sampulu Sia Si Sia-sia Aksara BatakJenis aksara Abugida BahasaRumpun bahasa BatakPeriodeAbad ke-18 hingga sekarangArah penulisanKiri ke kananAksara terkaitSilsilahMenurut hipotesis hubungan antara abjad Aramea dengan Brahmi, maka silsilahnya sebagai berikut: Abjad Proto-Sinai Abjad Fenisia Abjad Aramea Aksa...
Bartolomeu de GusmãoPotret Bartolomeu de Gusmão karya Benedito CalixtoLahirBartolomeu Lourenço de GusmãoDesember 1685Santos, koloni Brasil Portugis, Kerajaan Portugal (kini Brasil)Meninggal18 November 1724(1724-11-18) (umur 38)Toledo, SpanyolDikenal atasRancangan kapal udara, ImamKarya terkenalPassarolaTanda tangan Bartolomeu Lourenço de Gusmão (Desember 1685 – 18 November 1724) adalah seorang imam dan naturalis Portugis kelahiran Brasil. Ia adalah pionir rancangan kapal udara y...
HaifaחֵיפָהحيفاTừ trên bên trái: Cảnh Haifa về đêm nhìn từ Núi Carmel; Bahá'í World Centre; cảnh Đại học Haifa từ trên cao; Ahmadiyya Nhà thờ Mahmood; Carmelit; Bảo tàng Khoa học, Công nghệ, và Không gian; hình ảnh Haifa. Hiệu kỳHuy hiệuBản đồ HaifaHaifaVị trí ở IsraelVị trí tọa độ145/246 PALQuốc gia IsraelQuận HaifaThành lậpThế kỷ 1 CNChính quyền • KiểuThành ...
Civil parish in the City of Milton Keynes, England Human settlement in EnglandBow BrickhillAll Saints’ Church, Bow BrickhillBow BrickhillShow map of Milton KeynesBow BrickhillLocation within BuckinghamshireShow map of BuckinghamshirePopulation562 (2011 Census)[1]OS grid referenceSP9034Civil parishBow BrickhillUnitary authorityMilton KeynesCeremonial countyBuckinghamshireRegionSouth EastCountryEnglandSovereign stateUnited KingdomPost townMilton KeynesPos...
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Brass Tacks Pakistani TV program – news · newspapers · books · scholar · JSTOR (May 2008) (Learn how and when to remove this template message) Pakistani TV series or programme Brass TacksGenreNewsStarringZaid Zaman HamidCountry of originPakistanOriginal releaseNetworkNews One (Pakistani TV channel) B...
У этого термина существуют и другие значения, см. Петропавловка. СелоПетропавловка 51°00′15″ с. ш. 39°11′55″ в. д.HGЯO Страна Россия Субъект Федерации Воронежская область Муниципальный район Лискинский Сельское поселение Петропавловское История и география Час...
这是西班牙语人名,首姓或父姓是「马杜罗」,次姓或母姓(母親的父姓)是「莫罗斯」。 尼古拉斯·馬杜羅Nicolás Maduro Moros 委内瑞拉总统现任就任日期2013年4月19日代理:2013年3月5日-2013年4月19日2019年-2023年,與胡安·瓜伊多爭位副总统豪尔赫·阿雷亚萨(英语:Jorge Arreaza)(2013-2016年)阿里斯托武洛·伊斯图里斯(英语:Aristóbulo Istúriz)(2016-2017年)塔雷克·埃尔·艾�...
Coburn MountainCoburn MountainSomerset County, Maine, U.S. Highest pointElevation3,717 ft (1,133 m)Prominence2,497 ft (761 m)[1]ListingNew England Fifty Finest #16Coordinates45°28′08″N 70°07′36″W / 45.468833°N 70.126667°W / 45.468833; -70.126667GeographyLocationSomerset County, Maine, U.S.Topo mapUSGS Enchanted Pond Coburn Mountain is a mountain located in Somerset County, Maine.[2] Coburn Mtn. lies within the waters...
American panel talk television series For the British crime drama series, see The Five (TV series). The FiveGenreTalk showNews programCreated byRoger AilesPresented byGreg GutfeldDana PerinoJesse WattersJeanine PirroJessica TarlovHarold Ford Jr.No. of seasons12ProductionProduction locationNew York CityRunning time60 minutesProduction companyFox NewsOriginal releaseNetworkFox News ChannelReleaseJuly 11, 2011 (2011-07-11) –present The Five is an American conservative political talk ...
Indicator of economic importance of trade Trade openness in 2017[1] The trade-to-GDP ratio is an indicator of the relative importance of international trade in the economy of a country. It is calculated by dividing the aggregate value of imports and exports over a period by the gross domestic product for the same period. Although called a ratio, it is usually expressed as a percentage. It is used as a measure of the openness of a country to international trade and so may also be calle...
Defunct airfield in New Jersey, USA For the modern airport near Berlin, New Jersey, see Camden County Airport. Camden Central AirportIATA: noneICAO: noneSummaryOwner/OperatorCentral Airport IncServesPhiladelphia, Pennsylvania, U.S.Location5 mi (8.0 km) east of Philadelphia in Pennsauken Township, NJElevation AMSL7 ft / 2 mCoordinates39°55′48″N 75°04′44″W / 39.93000°N 75.07889°W / 39.93000; -75.07889MapRunways Direction Length Surfac...
For the Congress of Deputies constituency, see Albacete (Congress of Deputies constituency). For the Senate constituency, see Albacete (Senate constituency). AlbaceteCortes of Castilla–La ManchaElectoral constituencyLocation of Albacete within Castilla–La ManchaProvinceAlbaceteAutonomous communityCastilla–La ManchaPopulation386,464 (2021)[1]Electorate308,216 (2023)Major settlementsAlbaceteCurrent constituencyCreated1983Seats9 (1983–1986)10 (1986–2014)6 (2014–2019)7 (2019�...
Diagramma di Venn che mostra quali glifi delle lettere alfabetiche maiuscole sono condivise dagli alfabeti greco, latino e russo. Un diagramma di Venn (detto anche diagramma di Eulero-Venn[1]) è un diagramma che mostra tutte le possibili relazioni logiche tra una collezione finita di insiemi differenti. Questo metodo è stato proposto nel 1880 dal matematico inglese John Venn in un articolo intitolato On the Diagrammatic and Mechanical Representation of Propositions and Reasonings....
Main article: 1896 United States presidential election 1896 United States presidential election in Maine ← 1892 November 3, 1896 1900 → Nominee William McKinley William Jennings Bryan Party Republican Democratic Alliance Populist Home state Ohio Nebraska Running mate Garret Hobart Arthur Sewall Electoral vote 6 0 Popular vote 80,403 34,587 Percentage 67.90% 29.21% County Results McKinley 60-70% 70-80% President befor...
Type of climbing Descent of the Southeast Face of the Höfats East Summit in a drawing by Ernst Platz in the 1896 German Alpine Club Yearbook Grass climbing (German: Grasklettern) is a type of climbing in which, unlike rock climbing, the climber has to scale very steep grass mountainsides, through which the underlying rock protrudes in places. Description This type of climbing is used in the Alps, especially in the Bavarian range known as the Allgäu Alps where the numerous grass mountains, w...
Questa voce sull'argomento centri abitati del Guerrero è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Ahuacuotzingocomune(ES) Ahuacuotzingo Ahuacuotzingo – Veduta LocalizzazioneStato Messico Stato federato Guerrero TerritorioCoordinate17°42′51.13″N 98°56′05.93″W17°42′51.13″N, 98°56′05.93″W (Ahuacuotzingo) Altitudine1 298 m s.l.m. Superficie870,79[1] km² Abitanti26 858[2] (2015...
Bourne shell backward compatible Unix shell created by David Korn KornShellInteraction with OpenBSD's default shell, pdkshOriginal author(s)David KornInitial release1983; 41 years ago (1983)[1][2]Final release93u+ / August 1, 2012; 12 years ago (2012-08-01)Preview release93v- / December 24, 2014; 9 years ago (2014-12-24) Repositorygithub.com/att/astWritten inCOperating systemUnix and Unix-like (e.g. Linux and macOS; also wo...
بيتزاPizza (بالإيطالية) معلومات عامةالمنشأ إيطالياالمنطقة نابولي، كمبانيةبلد المطبخ مطبخ إيطالي النوع خبز مفرودحرارة التقديم ساخنة أو دافئةالمكونات الرئيسية عجين، وعادةً صلصة طماطم وجبنتنويعات أخرى كالزون، سترومبوليالشكل قرص — مستطيل تعديل - تعديل مصدري - تعديل ويكي �...
包公毅字朗生、朗孫、德寶號天笑、包山出生包清柱(1876-02-26)1876年2月26日逝世1973年10月30日(1973歲—10—30)(97歲) 英屬香港筆名包天笑子女包可永 包公毅(1876年2月26日—1973年10月30日),初名清柱,字朗生、朗孫、德寶、號天笑,別號包山,苏州府吴县人,20世纪中国通俗文学作家,鸳鸯蝴蝶派作家。 生平 包天笑幼年时,与賴豐熙、谭泰来的家庭曾同住苏州城西刘家浜...