SHA-2, ABD Ulusal Güvenlik Ajansı (NSA) tarafından tasarlanmış kriptografik özet (hash) fonksiyonları kümesidir.[1]Kriptografik özet fonksiyonları, hesaplanmış “özet” (çalıştırılan algoritmanın çıktısı) ile bilinen ve beklenen özet değerinin karşılaştırılmasıyla, dijital veri üzerinde yürüyen matematiksel operasyonlardır. Özet fonksiyonları ile bir kişi verinin bütünlüğüne karar verebilir. Örneğin, yüklenmiş bir dosyanın özet değerini hesaplamak ve sonucu önceden açıklanmış özet sonucu ile karşılaştırmak, yüklemenin değiştirilip değiştirilmediğini veya üzerinde oynama yapılıp yapılmadığını gösterebilir.[2] Kriptografik Hash fonksiyonlarının kilit noktası çakışma dirençleridir: hiç kimse aynı özet çıktısı veren iki farklı girdi bulamamalıdır.
SHA-2, kendinden önce gelen SHA-1’den önemli farklılıklar içermektedir. SHA-2 ailesi basamakları (hash değerleri) 224, 256, 384 veya 512 bit olan altı hash fonksiyonundan oluşur: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256, SHA-256 ve SHA-512 sırasıyla 32-bit ve 64-bitlik kelimelerle hesaplanmış orijinal özet fonksiyonlarıdır. Farklı kaydırma miktarları ve toplama sabitleri kullanırlar ancak yapıları neredeyse aynıdır. SHA-224 ve SHA-384 ilk ikisinin farklı başlangıç değerleri ile hesaplanmış, basitçe kesilmiş versiyonlarıdır. SHA-512/224 ve SHA-512/256 da SHA-512’nin kesilmiş versiyonlarıdır ama başlangıç değerleri Federal Bilgi İşleme Standardı (FIPS) PUB 180-4’te tanımlanmış metot kullanılarak üretilmiştir. SHA-2, Ulusal Standartlar ve Teknoloji Enstitüsü (NIST) bir Birleşik Devletler federal standardı (FIPS) tarafından 2001’de yayınlanmıştır. SHA-2 algoritmalar ailesi Birleşik Devletler 6829355 patentinde patentlenmiştir.[3] Birleşik Devletler patenti telifsiz lisans altında yayımlamıştır.[4]
2005’te, SHA-1 çakışmalarını, önceden mümkün olduğu düşünülen adım sayısından 2000 daha az adımda bulmak için bir algoritma geliştirilmiştir.[5] 2017’de SHA-1 çakışmasının bir örneği yayımlanmıştır.[6] SHA-1 tarafından bırakılan güvenlik marjini planlanandan zayıftır ve bu sebeple, kullanımı artık dijital imzalar gibi çakışma direncine bağımlı uygulamalar için önerilmemektedir. SHA-2, SHA-1 algoritmasına bazı benzerlikler taşısa da, bu ataklar SHA-2’ye başarılı bir şekilde genişletilememiştir.
Şu anda en iyi açık ataklar, aşağıda Kriptanaliz ve Doğrulama bölümünde gösterildiği gibi SHA-256’nın 52 turu veya SHA-512’nin 57 turu için preimage direncini ve SHA-256’nin 46 turu için çakışma direncini kırmaktadır.[7][8]
Özet (Hash) Standartları
FIPS PUB 180-2’nin yayımlanmasıyla, NIST SHA ailesinde üç tane ek özet fonksiyonu eklemiştir. Algoritmalar toplu olarak SHA-2 diye bilinir ve basamak uzunlukları (bit cinsinden) ile isimlendirilmişlerdir: SHA-256, SHA-384 ve SHA-512.
Algoritmalar ilk olarak 2001’de FIPS PUB 180-2 taslağında, public review and comments (kamu değerlendirmesi ve yorumları) kabul edildiğinde, yayımlanmışlardır. Ağustos 2002’de FIPS PUB 180-2, Nisan 1995’te yayımlanan FIPS PUB 180-1’in yerini alarak yeni Güvenli Hash Standardı haline geldi. Güncellenmiş standart, SHA-2 ailesinin iç çalışmalarını tanımlamasıyla tutarlı güncellenmiş teknik notasyonla birlikte orijinal SHA-1 algoritmasını içerir.[9]
Şubat 2004’te FIPS PUB 180-2 için, iki anahtarlı Üçlü DES’in anahtar uzunluğuyla eşleşmesi amacıyla SHA-224 için tanımlanmış ek bir değişkeni belirten bir değişiklik bildirimi yayımlandı.[10] Ekim 2008’de standart, FIPS PUB 180-3’te değişiklik bildirimindeki SHA-224 dahil olmak üzere güncellendi, ama bunun dışında standartta başka temel değişim yapılmadı. Standardı güncellemekteki başlıca motivasyon özet algoritmaları hakkındaki güvenlik bilgilerini ve Special Publications 800-107 ve 800-57 için kullanım önerilerini yeniden yerleştirmekti.[11][12][13] Detaylı test verisi ve örnek mesaj özetleri de standarttan kaldırıldı ve ayrı belge olarak temin edildi.[14]
Ocak 2011'de NIST,SP800-131A'yı yayınladı ve 2013 yılının sonuna kadar federal hükûmetin kullanımına izin verebilen 80 bit'lik (SHA-1 tarafından sağlanan) asgari güvenliğin 112 bitlik güvenlikle (SHA-2 tarafından sağlanan) değiştiğini belirtti. Yayın tarihinden itibaren minimum gereksinim ve önerilen güvenlik seviyesi bu şekilde değiştirildi.[15]
Mart 2012’de standart, SHA-512/224 ve SHA-512/256 özet fonksiyonları eklenerek ve SHA-512’nin kesilmiş versiyonları için başlangıç değerleri üretmek üzere bir metot tanımlanarak FIPS PUB 180-4’te güncellendi. Buna ek olarak, gerçek-zamanlı video veya ses beslemesi gibi özet verisinin içerik üretimi ile aynı anda hesaplanmasına izin verilerek, girdi verisini hash hesaplamasından önce eklemekteki kısıtlama kaldırıldı. Son veri bloğunu eklemek hala özet değeri çıktısından önce gerçekleştirilmelidir.[16]
Temmuz 2012’de NIST, kriptografik anahtar yönetimi için rehberlik sağlayan SP800-57’yi tekrar gözden geçirdi. Yayın, 2013’ten sonra özet güvenliği 112-bitten az olan dijital imzaların üretilmesine izin vermemektedir. 2007'den önceki revizyon, 2010'un sonuna kadar olan kesintiyi belirtti.[13] Ağustos 2012’de NIST, SP800-107’yi aynı şekilse gözden geçirdi.[12]
NIST özet fonksiyonu yarışması yeni hash fonksiyonu SHA-3’ü 2012 yılında seçti.[17] SHA-3 algoritması, SHA-2’den türetilmemiştir.
SHA-2 özet fonksiyonu, yaygın olarak kullanılan bazı güvenlik uygulamalarında ve protokollerde kullanılmaktadır, örneğin TLS ve SSL, PGP, SSH, S/MIME, and IPsec.
SHA-256, Debian yazılım paketleri[18] doğrulama sürecinde ve DKIM mesaj imzalama standardında yer almaktadır; SHA-256 and SHA-512'nin DNSSEC'de kullanılması önerilmektedir.[19] Unix ve Linux üreticileri, güvenli şifre özeti için 256-512 bit SHA-2'yi kullanmayı tercih etmektedir.[20]
Bitcoin gibi birkaç kripto para birimi işlemleri doğrulama yapmak, para iletimlerini kanıtlamak veya hisseleri hesaplamak için SHA-256 kullanır. ASIC SHA-2'nın çalışma hızındaki artış, kripto temelli ispat çalışmalarının daha fazla kullanılmasına neden oldu.
SHA-1 ve SHA-2, ABD'de bazı bölgelerde, kullanılması yasalar tarafından gerekli olan güvenli özet algoritmalarıdır. Başka şifreleme algoritmaları ve protokolleriyle birlikte devlet uygulamaları, hassas sınıflandırılmamış bilgilerin korunması için bu fonksiyonları kullanır. FIPS PUB 180-1, özel ve ticari kuruluşlar tarafından SHA-1'in benimsenmesini ve kullanılmasını teşvik etmiştir. Hükûmet, uygulamalarında SHA-1 kullanmayı bırakmaya başlamıştır. ABD Ulusal Standartlar ve Teknoloji Enstitüsü "Federal ajanslar, SHA-1 kullanmayı en kısa sürede çakışma direnci gerektiren uygulamalar için bırakmalı ve 2010'dan sonra bu uygulamalarda SHA-2 ailesi özet fonksiyonları kullanmalıdır" açıklamasında bulunmuştur.[21]
NIST'in bu açıklaması SHA-1'in bırakılma hızını arttırmıştır.[22]
SHA-2 fonksiyonları, SHA-1'den daha iyi güvenlik olmasına rağmen kabul edilme süreci hızlı değildi. Bu durumun nedenleri, Windows XP, SP2 veya daha üst sürümü çalıştıran sistemlerin SHA-2 için desteklenmemiş olması[23] ve henüz SHA-1 çakışmaları bulunmadığı için durumun acil olarak algılanamaması olabilir. Google Chrome ekibi, web tarayıcısının 2014'ün sonlarından 2015'in başlarına kadar bir süre boyunca SHA-1'e bağımlı TLS sertifikalarını kademeli olarak reddetmek için bir plan yaptıklarını açıkladı.[24][25][26] Benzer şekilde Microsoft,[27] Internet Explorer ve Edge'in kamuya açık SHA-1 imzalı TLS sertifikaları Şubat 2017'den itibaren onaylamayacağını açıkladı.
Kriptanaliz ve Doğrulama
Mesaj özetindeki bitlerin sayısının L olduğu bir özet fonksiyonu için belirli bir mesaj özetine karşılık gelen başka bir mesaj bulmak daima kaba kuvvet saldırısı (brute force attack) kullanılarak 2L hesaplamada yapılabilir. Buna saldırıya preimage attack denir. Saldırı L'ye ve hesaplamaların yapıldığı ortama bağlı olarak pratik olabilir ya da olmayabilir. İkinci kriterse aynı mesaj özetini üreten (çakışma olarak bilinen) collision iki farklı mesaj bulmamasıdır, doğum günü saldırısı (birthday attack) için ortalama sadece 2L/2 hesaplama gerektirir.
Şifre saklama işlemleri gibi kriptografik özetleri kullanan uygulamalar çakışma (collision) saldırısından en az etkilenirler. Belirli bir hesap için şifrenin oluşturulması, preimagesaldırılarını yanı sıra orijinal mesajın özet değerine(shadow dosyasında saklanmaktadır) erişimi gerektirir. Şifrelenmiş bir mesajın açılması bu saldırılarla mümkün değildir. Bununla birlikte en güvenli özet fonksiyonu bile zayıf parolalara karşı olan kaba kuvvet saldırılarını engellemez.
Belge imzalama durumlarında, bir saldırgan mevcut bir belge için basitçe sahte imza oluşturamaz; saldırganın zararsız ve zararlı olmak üzere iki adet belge üretmesi ve gizli anahtar sahibinin zararsız belgeyi imzalamasını istemesi gereklidir. Bunun mümkün olduğu bazı pratik koşullar vardır; 2008 yılının sonuna kadar, MD5 çakışmasıyla, yaygın olarak kullanılan web tarayıcıları tarafından kabul edilebilecek sahte SSL sertifikaları oluşturmak mümkündü.[28]
SHA-3 yarışması sırasında kriptografik özet analizine olan ilginin artması, SHA-2 ailesinde birkaç yeni saldırı ortaya çıkardı; bunların en iyileri aşağıdaki tabloda verilmiştir. Sadece çakışma saldırılarının karmaşıkları pratiktir; Saldırıların hiçbiri özet fonksiyonlarının tüm turları için geçerli değildir.
FSE 2012'de, Sony araştırmacıları sözde-çakışma saldırılarına karşı, SHA-256'nın 52 tura ve SHA-512'nin 57 tura uzatılmasını önerdi[29]
Yayın yeri
Yıl
Saldırı Yöntemi
Saldırı
Versiyon
Tur
Karmaşıklık
New Collision Attacks Against Up To 24-step SHA-2[30]
FIPS onaylı güvenlik işlevlerinin uygulamaları, Ulusal Standartlar Teknoloji Enstitüsü (NIST) ve Communications Security Establishment (CSE) ile ortaklaşa yürütülen CMVP programı aracılığıyla resmen doğrulanabilir. Gayri resmi doğrulama için NIST sitesinde, çok sayıda test vektörü üretmek içeren paketler, NIST'in sitesinde indirilebilir ancak bazı uygulamalar için sonuçta ortaya çıkan doğrulama, kanun tarafından gerekli görülen resmi CMVP doğrulamasının yerine geçmez.
Aralık 2013'ten itibaren, SHA-256'nın 1300'den ve SHA-512 'nin 900den fazla fazla geçerliliği varken yalnızca 5 tanesi mesajları her iki değişkene de destek verirken sekizin katı olmayan bit sayılarıyla çalışabilmektedir. (bkz. SHS Validation List 17 Haziran 2017 tarihinde Wayback Machine sitesinde arşivlendi.)
Test Değerleri
Boş stringlerin özet değerleri: (0 uzunluğundaki giriş metinlerinin).
Mesajdaki ufak bir değişiklik bile (çok büyük olasılıkla), avalanche effect(çığ etkisi) nedeniyle çok farklı bir özet oluşmasına sebep olacaktır. Örneğin, bu cümlenin sonuna bir nokta eklemek özet değerindeki bitlerinin neredeyse yarısını (224'ün 111'ü) değiştirir:
SHA-256 algoritması için sözde kod aşağıdaki gibidir. W [16..63] kelimelerinin bitleri arasındaki karıştırma işlemleri SHA-1'e kıyasla büyük oranda artmıştır.
Note 1: All variables are 32 bit unsigned integers and addition is calculated modulo 232Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 ≤ i ≤ 63Note 3: The compression function uses 8 working variables, a through hNote 4: Big-endian convention is used when expressing the constants in this pseudocode,and when parsing message block data from bytes to words, for example,the first word of the input message "abc" after padding is 0x61626380Initialize hash values:(first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
h0 := 0x6a09e667
h1 := 0xbb67ae85
h2 := 0x3c6ef372
h3 := 0xa54ff53a
h4 := 0x510e527f
h5 := 0x9b05688c
h6 := 0x1f83d9ab
h7 := 0x5be0cd19
Initialize array of round constants:(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
k[0..63] :=
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
Pre-processing:
begin with the original message of length L bits
append a single '1' bit
append K '0' bits, where K is the minimum number >= 0 such that L + 1 + K + 64 is a multiple of 512
append L as a 64-bit big-endian integer, making the total post-processed length a multiple of 512 bits
Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk
create a 64-entry message schedule array w[0..63] of 32-bit words
(The initial values in w[0..63] don't matter, so many implementations zero them here)
copy chunk into first 16 words w[0..15] of the message schedule array
Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array:for i from 16 to 63
s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3)
s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor (w[i-2] rightshift 10)
w[i] := w[i-16] + s0 + w[i-7] + s1
Initialize working variables to current hash value:
a := h0
b := h1
c := h2
d := h3
e := h4
f := h5
g := h6
h := h7
Compression function main loop:for i from 0 to 63
S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
ch := (e and f) xor ((not e) and g)
temp1 := h + S1 + ch + k[i] + w[i]
S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
maj := (a and b) xor (a and c) xor (b and c)
temp2 := S0 + maj
h := g
g := f
f := e
e := d + temp1
d := c
c := b
b := a
a := temp1 + temp2
Add the compressed chunk to the current hash value:
h0 := h0 + a
h1 := h1 + b
h2 := h2 + c
h3 := h3 + d
h4 := h4 + e
h5 := h5 + f
h6 := h6 + g
h7 := h7 + h
Produce the final hash value (big-endian):
digest := hash := h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7
ch ve maj değerlerinin hesaplanması SHA-1 için anlatıldığı şekilde optimize edilebilir.
SHA-224 ile SHA-256 aşağıdaki maddeler haricinde aynıdır:
İlk özet değeri h0,h7 'den farlıdır
Çıktı h7 atlanarak oluşturulmuştur.
SHA-224 initial hash values (in big endian):(The second 32 bits of the fractional parts of the square roots of the 9th through 16th primes 23..53)
h[0..7] :=
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
SHA-512 ile SHA-256 aşağıdaki maddeler haricinde yapı olarak aynıdır:
Mesaj 1024-bitlik parçalara bölünmüştür,
Başlangıç değerleri ve tur sabitleri 64 bite uzatılır,
64 yerine 80 tur vardır,
Mesaj planlama dizisi w, 64 32-bit kelime yerine 80 64-bit kelime içerir,
Mesaj planlama dizisi w'yi genişletmek için, döngü 16 ile 63 aralığında değil 16 ile 79 aralığında çalışır,
Tur sabitleri ilk 80 asal sayıdır 2..409,
Hesaplamalar için kullanılan kelime boyutu 64 bit uzunluğundadır,
Mesajın uzatılmış uzunluğu (ön işleme tabi tutulmadan önce), 128 bitlik bir big-endian tam sayıdır,
SHA-512/t ile SHA-512 aşağıdaki maddeler haricinde aynıdır:
İlk özet değeri h0 dan h7 'ye SHA-512/t ilk değer oluşturma fonksiyonu tarafından üretilir.
Çıktı h0 ile h7 arasındaki t bitlik kesişimden oluşur,
t 384'e eşit değildir, bunun yerine SHA-384 belirtildiği şekilde kullanılmalıdır.
t değerlerinin 224 ve 256 onaylandığı özellikle belirtilmektedir.
SHA-512/t ilk değer üretme fonksiyonu değiştirilmiş SHA-512'yi ASCII dizesi "SHA-512 / t" üzerinden hesaplar, t ondalık gösteriminin yerini alır. Değiştirilmiş SHA-512 ile SHA-512 h0h7 başlangıç değerleri, 0xa5a5a5a5a5a5a5a5 hexadecimal değeriyle XOR 'lanması dışında aynıdır.
SHA-2 ailesi karma işlevleri için örnek C uygulaması RFC 6234.'de bulunabilir
SHA Fonksiyonlarının Karşılaştırılması
Aşağıdaki tabloda, iç durum ; her bir veri bloğunun sıkıştırma işlemi sonundaki "iç özet değeri toplamı" dır.
İşlemler sütununda, "Rot" rotate no carry, "Shr" ise right logical shift işlemlerini ifade eder.SHA-3 dışındaki algoritmaların hepsi, modüler toplama kullanır.
Yukarıdaki performans numaraları, 64-bit modunda Linux altında 2.2 GHz hızında çalışan ve yalnızca genel karşılaştırma için kaba bir nokta olarak sunulan bir AMD Opteron 8354 üzerinde tek parçacıklı bir uygulama içindir. Modern işlemci mimarileri üzerinde daha ayrıntılı performans ölçümleri aşağıdaki tabloda verilmiştir.
SHA-256, 32-bit hesaplamalar için tasarlandığı için x86 mimarisinde 64-bit işlemciler için optimize edilmiş koddan yararlanır.SHA-512'nin 32-bitlik uygulamaları 64-bitlik uygulamalarından önemli ölçüde yavaştır. Her iki algoritmanın farklı çıktı boyutlarına sahip varyantları, mesaj genişletme ve sıkıştırma fonksiyonları aynı olduğu ve yalnızca başlangıç özet değerlerinden dolayı çıktı boyutları farklı olduğu için benzer şekilde performans gösterecektir.MD5 ve SHA-1'in en iyi uygulamaları, modern işlemcilerde bayt başına 4,5 ila 6 devir arasında performans gösterir.
Testler Illinois Chicago Üniversitesi tarafından 3.5 GHz saat hızında bir Intel Xeon E3-1275 V2 çalıştıran hidra8 ve 3.8 GHz hızında bir AMD A10-5800K çalışan hydra9 sistemlerinde gerçekleştirildi.[44] Yukarıdaki Döngü/bayt hızları, SUPERCOP yazılımını kullanarak 4,096 baytlık bir mesajı işleyen bir algoritmanın performansıdır.[45] MiB / s performansı tek bir çekirdekteki CPU saat hızından çıkarılır; Gerçek dünyadaki performansı, çeşitli faktörlere bağlı olarak değişecektir.