RL10, itici gazlar olan kriyojeniksıvı hidrojen ve sıvı oksijen yakan, Aerojet Rocketdyne tarafından Amerika Birleşik Devletleri'nde inşa edilen sıvı yakıtlı kriyojenik bir roket motorudur. Modern versiyonlar vakumda motor başına 110 kilonewton (25.000 lbf) kadar itme gücü sağlar. Atlas V'in Centaur üst fazı ve Delta IV'ün DCSS'si için üç RL10 versiyonu üretildi. Uzay Fırlatma Sisteminin Keşif Üst Fazı, OmegA roketinin üst fazı ve Vulcan roketinin Centaur V'i için üç versiyon daha geliştirilmektedir.[2]
Motorun kullandığı genişletme döngüsü, turbo pompayı motor yanma odası, oluk ve nozul tarafından emilen atık ısı ile çalıştırır. Bu, hidrojen yakıtı ile birleştiğinde, bir vakumda 373-470 saniye (3,66-4,61 km/s) aralığında çok yüksek spesifik darbelere (Isp) yol açar. Kütle, motorun versiyonuna bağlı olarak 131-317 kilogram (289-699 lb) arasında değişmektedir.[3][4]
Tarih
RL10, 1950'lerden itibaren Marshall Uzay Uçuş Merkezi ve Pratt & Whitney tarafından motorun geliştirilmesiyle Amerika Birleşik Devletleri'nde inşa edilen ilk sıvı hidrojen roket motoruydu. RL10, başlangıçta USAF Lunex ay iniş aracı için gaz pedallı bir motor olarak geliştirildi ve sonunda bu özelliği yirmi yıl sonra DC-X VTOL araçta kullanmaya başladı.[5]
RL10 ilk olarak 1959'da, Florida, West Palm Beach'teki Pratt & Whitney Florida Araştırma ve Geliştirme Merkezi'nde test edildi.[6][7] İlk başarılı uçuş 27 Kasım 1963'te gerçekleşti.[8][9] Bu lansman için, iki RL10A-3 motoru, bir Atlas fırlatma aracının Centaur üst kademesine güç verdi. Fırlatma, aracın yoğun şekilde enstrümantasyonlu bir performans ve yapısal bütünlük testini yönetmek için kullanıldı.[10]
Motorun birden çok versiyonu uçuruldu. Satürn I'in S-IV'ü altı RL10A-3'ün bir kümesini kullandı ve Titan programı da RL10 tabanlı Centaur üst fazlarını içeriyordu.[kaynak belirtilmeli]
Bir RL10B-2 yanma odasının lehimlenmesindeki bir kusur, Orion-3 iletişim uydusunu taşıyan 4 Mayıs 1999 Delta III fırlatmasının başarısızlığının nedeni olarak belirlendi.[12]
Ares I ve Ares V'i ortak bir çekirdek aşamasını paylaşan bir roket ailesiyle değiştirmeye yönelik DIRECT sürüm 3.0 önerisi, J-246 ve J-247 fırlatma araçlarının ikinci fazı için RL10'u önerdi.[13] Önerilen Jüpiter Üst Fazı'nda, Uzay Fırlatma Sistemi Keşif Üst Fazı'na eşdeğer bir role hizmet eden en fazla yedi RL10 motoru kullanılmış olacaktı.
Ortak Genişletilebilir Kriyojenik Motor
2000'lerin başında NASA, Ortak Genişletilebilir Kriyojenik Motor (CECE) göstericisini geliştirmek için Pratt & Whitney Rocketdyne ile sözleşme yaptı. CECE'nin derin kısma yapabilen RL10 motorlara yol açması amaçlanmıştır.[14] 2007 yılında, çalışabilirliği (bazı "kesikli yanma" ile) 11:1 gaz oranlarında ifade edildi.[15] 2009 yılında NASA, bu tür bir genişletme döngüsü motoru için bir rekor olan yüzde 104 itme itişinden yüzde 8 itme itişine başarıyla kısıldığını bildirdi. Tıkama, itici gazların basıncını, sıcaklığını ve akışını kontrol eden enjektör ve itici besleme sistemi modifikasyonları ile ortadan kaldırıldı.[16] 2010 yılında, kısma aralığı 17,6:1 oranına genişletilerek %104'ten %5,9'a çıkarıldı.[17]
2010'ların başındaki olası halef
2012'de NASA, yeni nesil üst kademe tahrik sistemini incelemek için ABD Hava Kuvvetleri'ne (USAF) katıldı ve Aerojet Rocketdyne RL10'un yerini alacak yeni bir üst kademe motordaki ajansların ortak alanlarını resmileştirdi.
“
""Bir RL10 üzerindeki liste fiyatını biliyoruz. Zaman içinde maliyete bakarsanız, EELV'lerin birim maliyetinin çok büyük bir kısmı tahrik sistemlerine atfedilebilir ve RL10 çok eski bir motordur ve üretimi ile ilgili çok sayıda basamağı vardır. ... Bu çalışmanın anlayacağı şey bu, bir RL10 yedeği oluşturmaya değer mi?"
— Dale Thomas, Marshall Uzay Uçuş Merkezi Teknik Direktörü[18]
USAF, ABD hükûmeti uydularını uzaya göndermenin başlıca yöntemleri olan Lockheed Martin Atlas V ve Boeing Delta IV Evrilmiş Harcanabilir Fırlatma Araçlarının (EELV) üst kademelerinde kullanılan Rocketdyne RL10 motorlarını değiştirmeyi planlıyordu.[18] Uygun Maliyetli Üst Kademe Motor Programı (AUSEP) kapsamında aynı zamanda ilgili bir gereklilik çalışması yapıldı.[19]
İyileştirmeler
RL10 yıllar içinde gelişti. DCSS'DE kullanılan RL10B-2, daha iyi performans, geri çekilebilir bir nozul, daha az ağırlık ve daha fazla güvenilirlik için elektromekanik dengelemeye (gimbaling) ve 464 saniye (4,55 km/s)'lik spesifik bir darbelemeye sahipti.[kaynak belirtilmeli]
2016'da, Aerojet Rocketdyne, katkı üretimini RL10 inşaat sürecine dahil etmek için çalışıyordu. Şirket, Mart 2016'da baskılı ana enjektörlü bir motorda,[20] ve Nisan 2017'de itiş odası tertibatına sahip bir motorda tam ölçekli sıcak yanma testleri gerçekleştirdi.[21]
RL10 için mevcut uygulamalar
Atlas V Centaur (roket fazı): Tek motorlu centaur (SEC) versiyonu RL10C-1'i[2] kullanırken, çift motorlu centaur (DEC) versiyonu daha küçük olan RL10A-4-2'yi kullanmaktadır.[22]
Delta Kriyojenik İkinci Faz: Mevcut DCSS, genişletilebilir nozullu bir RL10C-2-1'e sahiptir.[23][24]
Geliştirilmekte olan motorlar
Üç RL10C-X motor versiyonu yeterlilik testinden geçmektedir ve teslim sürelerini ve maliyeti azaltması beklenen 3D baskı kullanan ana motor bileşenlerini içerecektir.[2]
SLS Keşif Üst Fazı: Nisan 2016'da, Block 1B Uzay Fırlatma Sistemi'nin Keşif Üst Fazı'nda (EUS) uçmak üzere dört RL10 motoru seçildi.[25] Ekim 2016'da NASA, EUS'un RL10C-X motorlarının en büyüğü ve en güçlüsü olan[26] yeni RL10C-3 sürümünü kullanacağını duyurdu.[2]
OmegA Üst Fazı: Nisan 2018'de Northrop Grumman İnovasyon Sistemleri, OmegA'da üst fazda iki RL10C-5-1 motorunun kullanılacağını duyurdu.[27] Aerojet Rocketdyne'nin motoru seçilmeden önce Blue Origin'in BE-3U ve Airbus Safran'ın Vinci'si de dikkate alındı.
Vulcan Centaur Üst Fazı: 11 Mayıs 2018'de United Launch Alliance (ULA), rekabetçi bir tedarik sürecinin ardından ULA'nın yeni nesil Vulcan Centaur roketi için RL10C-X üst kademe motorunun seçildiğini duyurdu.[28] Centaur V, RL10C-1-1'i kullanacaktır.
Gelişmiş Kriyojenik Evrimleşmiş Aşama
(2009 (2009) itibarıyla), Vulcan fırlatma aracı için mevcut ULA Centaur ve Delta Kriyojenik İkinci Faz (DCSS) teknolojisinin uzun zamanlı, düşük kaynama noktalı bir uzantısı olan Advanced Cryogenic Evolved Stage'e (ACES) güç sağlamak için RL10'un geliştirilmiş bir versiyonu önerildi.[29] Uzun süreli ACES teknolojisi, yer eşzamanlı, cislunar ve gezegenler arası görevleri desteklemeyi amaçlamaktadır. Diğer bir olası uygulama, LEO'daki veya L2'deki uzaydaki itici yakıt depoları gibi, diğer roketlerin LEO'nun ötesinde veya gezegenler arası görevlere giderken durması ve yakıt ikmali için yol istasyonları olarak kullanılabilir. Uzay enkazının temizlenmesi de önerilen görevler arasında yer almaktadır.[30]
^"Evolving to a Depot-Based Space Transportation Architecture"(PDF). AIAA SPACE 2010 Conference & Exposition. AIAA. 2 Eylül 2010. 20 Ekim 2011 tarihinde kaynağından(PDF) arşivlendi. Erişim tarihi: 25 Ocak 2011. ACES design conceptualization has been underway at ULA for many years. It leverages design features of both the Centaur and Delta Cryogenic Second Stage (DCSS) upper stages and intends to supplement and perhaps replace these stages in the future. ...