Plazma (Grekçe πλάσμα, Fransızca plasma "biçimlendirilebilir madde"[1]), gaz hâldeki maddelerinmanyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasaltepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.
Plazma, kimya ve fizikte iyonlaşmış gaz anlamına gelmektedir. İyonlaşmış gaz için kullanılan plazma sözcüğü 1920'li yıllardan beri fizik yazınında yer etmeye başlamıştır. Kendine özgü niteliklere sahip olduğundan, plazma biçimi maddeninkatı, sıvı ve gaz biçiminden ayrı olarak incelenir.
Katı bir cisimde cismi oluşturan moleküllerin hareketi çok azdır, moleküllerin ortalama hareket enerjisi herhangi bir yöntemle (örneğin ısıtarak) arttırıldığında cisim ilk önce sıvıya, sonra da gaza dönüşür. Gaz fazında elektronlar gayet hızlı hareket ederler. Eğer gaz hâlinden sonra da ısı verilmeye devam edilirse iyonlaşma başlayabilir, bir elektron çekirdek çekiminden kurtulur ve serbest bir elektron uzayı meydana getirerek maddeye yeni bir biçim kazandırır. Atom bir elektronu eksilmiş ve net bir pozitif yüke sahip olmuş olacaktır. Yeterince ısıtılmış gaz içinde iyonlaşma defalarca tekrarlanır ve serbest elektron ve iyon bulutları oluşmaya başlar. Ama bazı atomlar nötr kalmaya devam eder. Oluşan bu iyon, elektron ve nötr atom karışımı; plazma olarak adlandırılır.
Evrende madde dört hâlde bulunur. Bunlar katı, sıvı, gaz ve plazma hâlidir. Mikroskobik açıdan plazma, sürekli hareket eden ve etkileşen yüklü parçacıklar topluluğu olarak söylenir. Plazma içinde nötr atom ya da moleküllerin olması plazma hâlini değiştirmez. Kimyasal tepkimeleri oldukça hızlıdır. Çünkü plazma maddenin en sıcak hâlidir ve elektronların çekirdek ile olan bağları güçsüzdür.
Plazmalar soğuk ve sıcak plazmalar olarak ayrılabilir. Yıldızlar sıcak plazmaya örnekken floresan soğuk bir plazmadır.
Bir plazma, gaz ısıtılarak veya bir lazer ya da mikrodalga jeneratörü ile uygulanan güçlü bir elektromanyetik alana tabi tutularak oluşturulabilir. Bu elektron sayısındaki düşüş ya da artışlar, iyonlar adı verilen pozitif veya negatif yüklü parçacıklar oluşturur ve eğer varsa moleküler bağların ayrışmasına eşlik eder [2][3]
Bu yük taşıyıcılarının önemli sayıda varlığı plazmayı elektriksel olarak iletken hâle getirir, böylece elektromanyetik alanlara şiddetle tepki verir. Gaz gibi plazmanın da bir kap içine konulmadıkça belirli bir biçimi veya belirli bir hacmi yoktur. Gazdan ayrı olarak, bir manyetik alanın etkisi altında lifler, kirişler ve çift katmanlı yapılar oluşturabilmektedir.
Plazma sıradan maddenin evrendeki en bol hâlidir; çoğu düşük yoğunluktaki bölgelerde, özel küme içi ortamlarda ve Güneş de dahil olmak üzere yıldızlarda madde bu şekilde bulunmaktadır. Plazmaların dünyadaki yaygın şekli ışıklı reklam tabelalarında görülür.[4][5]
Plazma ile ilgili çoğu özellik, kontrollü nükleer füzyon ve füzyon gücü ile ilgili araştırmalar sonucun bulunmuştur. Bunun nedeni plazma fiziğinin nükleer füzyonun anlaşılması için gerekli temeli sağlamasıdır.
Özellikleri ve Parametreler
Tanım
Plazma, kolayca gevşek bağlı olmayan pozitif ve negatif parçacıkların elektriksel olarak nötr ortamı şeklinde söylenmesidir. (yani bir plazmanın genel yükü yaklaşık sıfırdır). Bağlanmamış olmalarına karşın bu parçacıkların güçlerin karşılaşması konusunda tamamen serbest olmadıklarını belirtmek önemlidir. Harekete geçtiklerinde, manyetik alanlarla elektrik akımı oluşturur ve bunun sonucu olarak, birbirlerinin alanlarından etkilenirler. Bu onların çok serbestlik derecesiyle ortak davranışlarını yönetir. Bir tanımın üç ölçütü olabilir.[3][7][kaynak belirtilmeli][8][9]
Plazma Yaklaşımı: Yüklü parçacıklar sadece en yakın parçacıkla etkileşimden çok, parçacık etkisi çok yakın yüklü parçacıklarla birbirine yeterince yakın olmalıdır (bu kolektif etkiler plazmanın ayırt edici özelliğidir). Belirli bir parçacığın etki alanı içinde yük taşıyıcılarının sayısı yüklü parçacıklarıyla (yarıçapı Debye tarama uzunluğu Debye küresi denir) toplu davranış sağlamak için birlik daha yüksek olduğunda plazma yaklaşımı geçerlidir. Debye küresinde parçacıkların ortalama sayısı plazma parametresi tarafından verilir, "Λ" (Yunan alfabesinde büyük Lambda),[ambiguous]
Toplu Etkileşimler :Debye tarama uzunluğu plazmanın fiziksel boyutuna göre kısadır. Bu kriter, plazma hacmi içinde meydana gelebilecek sınırlı etkilerin kenarlarından daha önemli olduğu anlamına gelir. Bu kriter gerçekleştiğinde, plazma yarı nötr olur.
Plazma Frekansı: Elektron plazma frekansı (elektron plazma salınımlarının ölçülmesi) (elektronlar ve nötr partiküller arasındaki çarpışma sıklığının ölçülmesi) elektron çarpışma sıklığı ile karşılaştırıldığında büyüktür. Bu durum geçerli olduğu zaman, elektrostatik etkileşimler, sıradan gaz kinetik işlemlerden daha baskındır.
Değişken Parametreler
Plazma parametreleri [ambiguous] büyüklükte birçok ayrı değer alabilir, ancak ayrı parametreler ile plazmaların özellikleri çok benzer olabilir. Aşağıdaki grafik sadece geleneksel atom plazmalar ve kuark gluon plazmalar gibi değil, egzotik fenomeni de göz önünde bulundurur
Plazma parametrelerinin tipik aralıkları: büyüklük düzenleri (OOM)
Plazma için, iyonlaşma gereklidir. Terim olarak "plazma yoğunluğu" genellikle "elektron yoğunluğu"nu kapsar, hacim başına serbest elektron sayısına karşılık gelir. Bir plazmanın iyonlaşma derecesi, atom oranının elektron kaybetmiş ya da kazanmış olduğu sıcaklıkla kontrol edilir. Hatta parçacıklar %1 daha az iyonize edildiğinde, kısmen iyonize gazı, plazma özelliğini elde edebilir. (yani manyetik alanlara tepki ve yüksek elektriksel iletkenlik.). İyonlaşma derecesi, , olarak , olarak tanımlanır. iyon sayısı yoğunluğu nötral atomlarının sayısı yoğunluğudur.Elektron yoğunluğu, iyonların ortalama şarj durumu aracılığıyla ilişkilendirilir . elektron sayısı yoğunluğudur.
Sıcaklık
Plazma sıcaklığı genel olarak K veya elektrovoltla ölçülür ve partikül başına termal kinetik enerjinin ölçümü ile elde edilir. Çok yüksek sıcaklıklara genelde plazmanın bir tanımlayıcı özelliği olan iyonlaşmayı sürdürmek için ihtiyaç vardır. Plazma iyonlaşma derecesi iyonlaşma enerjisine göre (yoğunluğu ile daha zayıf) elektron sıcaklığı ile belirlenir, bu ilişki Saha denklemi olarak adlandırılır. Düşük sıcaklıklarda, iyonlar ve elektronlar bağlı duruma gelir -atom- ve sonunda plazma gaz haline gelme eğilimindedir.[12]
Çoğu durumda elektronlar sıcaklığı nispeten iyi tanımlanmış termal dengeye yakındır, Maxwell enerji dağıtım işlevinde önemli bir sapma olduğunda bile; örneğin, UV radyasyon, enerji yüklü parçacıkları ya da kuvvetli elektrik alanları. Kütledeki büyük farktan dolayı, iyonlar veya nötr atomlar denge haline gelene kadar elektronlar daha hızlı termodinamik dengeye gelir. Bu nedenle, iyon sıcaklığı (genellikle daha düşük) ile elektron sıcaklığı çok farklı olabilir. Bu iyonlar ortam sıcaklığına yakın, genellikle zayıf iyonize teknolojik plazmalarda yaygındır.
Termal ve Termal Olmayan Plazmalar
Elektronlar, iyonlar ve nötrler, sıcaklıklarına göre, plazmalar "termal" ya da "termal olmayan" olarak sınıflandırılır. Termal plazmaların aynı sıcaklıkta elektron ve ağır parçacıkları var, yani birbirleri ile termal dengede bulunmaktadırlar. Öte yandan termal olmayan plazmalar, daha düşük sıcaklıkta (bazen oda sıcaklığı) elektronlar fazla "sıcak" iken iyonlar ve nötrlere sahiptir. ().
Bir plazma bazen neredeyse tamamen iyonlaşmışsa "sıcak" veya gaz moleküllerinin (örneğin %1) yalnızca küçük bir bölümü iyonlaşmışsa "soğuk" diye adlandırılır, ancak "sıcak plazmanın" ve "soğuk plazmanın" diğer tanımları yaygındır. Hatta bir "soğuk" plazmada elektron sıcaklığı tipik olarak birkaç santigrat derecedir. "Plazma teknolojisi" ("teknolojik plazmalar") olarak kullanılan plazmalar genellikle gaz moleküllerinin sadece küçük bir kısmının iyonlaşması anlamında soğuk plazmalardır.
Plazma Potansiyeli
Plazmalar çok iyi elektrik iletkenleri olduğundan, elektrik potansiyelleri önemli bir rol oynamaktadır. Potansiyel yüklü parçacıklar arasındaki boşlukta ortalama var olan bağımsız potansiyele "plazma potansiyeli" veya "uzay potansiyeli" denir. Eğer bir elektrot plazma içine takılırsa, potansiyeli nedeniyle genellikle Debye kılıf denir ve plazma potansiyelin altında önemli ölçüde yalan olur. Plazmaların iyi elektrik iletkenliği onların elektrik alanlarını çok küçük hale getirir. Bu negatif yük yoğunluğu plazmanın (), büyük miktarlarda üzerindeki pozitif yüklerin eşit olduğunu söyleyen "sözde tarafsızlık" kavramı ile sonuçlanır, fakat ölçekte Debye uzunluğu dengesizliği şarj edilebilir. Bu özel durumda çift tabaka oluşturulmaktadır, yük ayırmada Debye uzunlukları onlarca uzayabilir.
Potansiyelleri ve elektrik alanlarının büyüklüğü sadece net yoğunluğunu bulmak için başka yollarla tespit edilmelidir. Genel bir örnek, Boltzmann elektronlar arasındaki bağlantıyı karşıladığını farz etmiştir:
Bu elektrik alanındaki yoğunluğu hesaplamanın bir diğer yolu:
Yarı nötr olmayan bir plazma üretmek mümkündür. Örneğin, bu elektron ışınında sadece negatif yük vardır. Bir nötr olmayan plazmanın yoğunluğu genellikle çok düşük olmalıdır ya da çok küçük olmalıdır, aksi takdirde itici elektrostatik kuvvet tarafından harcanmış olur.
Astrofizik plazmalardaki Debye taraması doğrudan üzerindeki plazmayı etkileyen alanları etkiler, yani Debye uzunluğundan daha büyük mesafeleri. Ancak, yüklü parçacıkların varlığı plazma oluşturmaya neden olur ve manyetik alandan etkilenebilir. Bu ve bu tür plazma çift tabakaların nesli olarak son derece karmaşık davranışlara neden olabilir, amacı Debye uzunlukları üzerindeki yükü ayırmak olan. Dış ve kendinden oluşturulan manyetik alanlar ile etkileşen plazmaların dinamikleri manyeto hidro dinamiklerinin akademik disipliniyle incelenir.
Mıknatıslama
Yüklü parçacıkların hareketini etkilemek için yeterince güçlü manyetik alan plazmanın mıknatıslandığı söylenebilir. Ortak bir nicel kriter ortalama bir parçacık bir çarpışma yapmadan önce manyetik alan etrafında en az bir dönüş tamamlar, yani , , "elektron dönme frekansı" dır ve i"elektron çarpışma hızı" dır. Genellikle iyonlar yokken elektronların mıknatıslanması durumudur. Anizotropik olan manyetize plazmaların, manyetik alana paralel yönde ona dik olan ayırıcı özellikleri vardır. Plazmalardaki elektrik alanlar yüksek iletkenlikleri genellikle küçük olsa da, manyetik alanda hareket eden bir plazma ile bağlantılı elektrik alan ( elektrik alanı, hız, ve manyetik alan), tarafından verilmiş ve Debye koruyucuyu etkilemez[14]
Plazma ve Gaz Fazların Karşılaştırılması
Plazma genellikle katı, sıvı ve gazlardan sonra maddenin dördüncü hali olarak adlandırılır.[15][16] Bunlardan ve maddenin diğer düşük enerji durumlarından ayrıdır. Yakından da kesin bir biçim veya hacme sahip olmaması ile gaz fazıyla benzer olmasına rağmen, aşağıdakiler de dahil birçok yolla farklılık gösterir:
Çok düşük: Hava mükemmel bir yalıtkandır ta ki santimetre başına 30 kilovolt üstünde elektrik alan şiddetleri deki plazma içine bozulur.[17]
Genellikle çok yüksek: Birçok amaç için, plazma iletkenliği, sonsuz olarak kabul edilebilir.
Bağımsız olarak türlerin davranışı
Bir: benzer bir şekilde davranan tüm gaz parçacıkları, yer çekiminden ve birbirleriyle çarpışmalarından etkilenir.
iki veya üç: Elektronlar, iyonlar, proton ve nötronlar, onların yükünün işareti ve değeri ile ayırt edilebilir bu yüzden onlar, farklı kütlelerin sıcaklıkları ve hızları ile, birçok durumda bağımsız davranır, dalgalar ve istikrarsızlıkların yeni tipi gibi.
Hız dağılımı
Maxwell: Çarpışmalar, çok az nispeten hızlı parçacıkları ile genellikle tüm gaz parçacıklarının bir Maxwell hız dağılımına yol açar.
Genellikle Maxwell olmayan: Çarpışma etkileşimleri genellikle sıcak plazmalardaki zayıflıklardır ve and dış kuvvet, yerel denge den uzak plazmayı sürebilir ve normalden hızlı parçacıkların önemli bir nüfusuna yol açar.
Etkileşimler
Çift: İki parçacık çarpışmaları kuraldır, üç-cisim çarpışmalar son derece nadirdir.
Toplu: Dalgalar veya plazma organize hareketleri çok önelidir çünkü parçacıklar, elektrik ve manyetik kuvvetler aracılığıyla uzun mesafelerde iletişim kurabilir.
Ortak Plazmalar
Plazmalar kütlece ve hacimce evrende sıradan maddeden uzak en yaygın fazdır.[18] Esasen, yıldızlardan gelen uzaydan görünür ışıkta görünür dalga boyu aralığında, kuvvetli bir sıcaklığa sahip plazmalar bulunmaktadır. Evrendeki sıradan (veya baryonik) maddenin çoğu, X-ışınları gibi ışık saçar galaksiler arası ortamda bulunan plazmalar gibi, ama daha sıcak.
Hannes Alfvén 1937 yılında, plazma evrene yayılırsa galaksi ile ilgili manyetik alan üretme kapasitesine sahip elektrik akımlarını taşıyabileceğini savundu. Nobel Ödülü'nü kazandıktan sonra şunları vurguladı.[19]
"Belirli bir plazma alanında olayları anlamak için gerekli olan tek yol manyetik değil, elektrik alanı ve elektrik akımını eşlemek gerekir. Uzay büyük veya çok büyük mesafelerde enerji ve momentum transferi akıntı şebekesi ile doludur. Akımlar genellikle lif veya yüzey akımlarıdır. İkincisi de hücresel yapı olarak yıldızlararası ve galaksiler arası uzaya yer vermek olasıdır."[20]
Buna karşılık mevcut bilimsel konsensüse göre evrendeki toplam enerji yoğunluğu yaklaşık %96 plazma ya da sıradan maddeden başka bir biçimde, ama soğuk karanlık madde ve karanlık enerji kombinasyonudur. Güneş ve tüm yıldızlar, plazma ile dolu yıldızlararası uzayda ve galaksiler arası uzayda da plazma yapabilir. Doğrudan görünmez karadeliklerin bile iyonize madde artışı tarafından körüklendiği düşünülmektedir [21] ve aydınlık püskürtülen plazma astrofizik jetleri ile ilişkilidir, mesela M87 adlı jet 5000 ışık yılı uzanır,[22][23]
Güneş sistemimizde, gezegenler arası uzay Güneş Sistemi dışında Güneş'ten uzanan Güneş Rüzgâr plazma ile doludur. Ancak, sıradan maddenin yoğunluğunun ortalaması karanlık madde veya karanlık enerjiye göre çok daha yüksektir. Plazma olmayan Jüpiter gezegeni hesapları, Plüton'un yörüngesi içinde hacmi ve kütlesi yaklaşık %0.1'dir.
Sırayla onlar plazma çok ağır negatif iyon bileşeni gibi hareket edebilir, böylece bir plazma içindeki toz ve küçük taneler de net bir negatif yükü bulur (bknz. tozlu plazmalar).
Plazmanın ortak şekilleri
Yapay üretim
Karasal plazmalar
Uzay ve astrofizik plazmalar
Bu, TV ekranlarıda dahil, plazma ekranlar bulundu.
Floresan lambaların içi (düşük enerji aydınlatma)[24]
Roket egzozu ve iyon iticiler
Atmosfere yeniden girişi sırasında bir uzay aracının ısı kalkanı önündeki alan
Ozon jeneratörü içinde bir korona boşalması
Füzyon enerji araştırmaları
Bir yay lambası elektrik yay, yay kaynakçı veya plazma meşale
Plazma topu (bazen plazma küre veya plazma lambası olarak da adlandırılır)
Tesla bobinleri tarafından (rezonans hava çekirdekli transformatörü veya yıldırım benzer arklar üreten bozan bobin, ancak statik elektriğe yerine alternatif akım ile) üretilen yaylar
Reaktif iyon dağlama, püskürtme, yüzey temizliği ve plazma arttırılmış kimyasal buhar birikimi içeren yarı iletken madde üretiminde kullanılan Plazmalar
Yüksek güç lazerler malzemelerle etkileşime girdiğinde Lazerle üretilen plazmalar (SPK), bulundu.
Optik emisyon spektroskopisi veya kütle spektrometresi için argon gazı tipik oluşmuş Endüktif eşleşmiş plazma (ICP),
Tipik bir rezonans birleştirme yöntemi olarak mikrodalga kullanılarak üretilen Manyetik kaynaklı plazmalar (MIP),
Statik elektrik kıvılcımları
Yıldırım
St. Elmo yangını
Üst atmosferik yıldırım (örn Mavi jetleri, Mavi başlayanlar, dev jetler, ELFLER)
Güneş ve diğer yıldızlar (plazmalar nükleer füzyon tarafından ısıtılan)
Güneş rüzgârı
Gezegenlerarası ortam (gezegenler arasındaki boşluk)
Yıldızlararası ortam (yıldız sistemleri arasındaki boşluk)
Galaksiler arası ortam (galaksiler arasındaki boşluk)
Io-Jüpiter akı tüpü
Yığılma diski
Yıldızlararası bulutsu
Cometary iyon kuyruğu
Karmaşık Plazma Olayları
Plazmaları yöneten temel denklemlerin nispeten basit olmasına rağmen, plazma davranışı olağanüstü değişik ve incedir: basit bir modelden beklenmeyen bir davranış ortaya çıkması karmaşık bir sistemin tipik özelliğidir. Bu tür sistemler düzenli ve düzensiz davranışı arasındaki sınırda basit, düz, matematiksel yöntemler ya da rastgelelik yoluyla tarif edilemez. Uzunluk ölçeklerinde geniş bir yelpazede ilginç mekansal özelliklerinden kendiliğinden oluşan plazma karmaşıklığının bir tezahürüdür. Mesela özellikleri çok ilginçtir, çünkü bunlar çok keskin mekansal aralıklı (özellikler arasındaki mekansal özellikleri kendilerinden çok daha büyük) ya da fraktal biçimlidir. Bu özelliklerin birçoğu laboratuvarda incelenmiş ve daha sonra evrende kabul edilmiştir. Plazmadaki karmaşıklığın ve karmaşık yapıların örnekleri şunlardır:
Filamentasyon
Aynı zamanda Birkeland akımlar olarak da bilinen çizgiler veya dize benzeri yapılar,[27] birçok plazmada görülen plazma topu, aurora, yıldırım, elektrik arkları, güneş patlamaları ve süpernova kalıntıları gibi,[28],[29].[30][31] Bazen büyük akım yoğunlukları ile ilişkilidir ve manyetik alan ile etkileşim manyetik halat yapısını oluşturabilir.[32] Atmosfer basıncında yüksek güçlü mikrodalga analizi, aynı zamanda lif yapıların oluşmasına yol açar.[33]
Filamentasyon aynı zamanda kendi kendine odaklanan bir yüksek güçlü lazer darbesine değinmektedir. Yüksek güçlerde, kırılma indisinin doğrusal olmayan bir kısmı önemli hale gelir ve lazere odaklanan ters tepki lazer kenarlarında daha parlak olan lazer ışının merkezinde yüksek bir kırılma indeksine neden olur. Sıkı odaklı lazer plazma yüksek tepe parlaklığına (ışıma) sahiptir. Plazma daha düşük bir kırılma indisine sahiptir ve lazer ışınının odak dışı kalmasına sebep olur. Kırılma endeksi, odaklama ve odaktan uzaklaşma plazma etkileşimi uzunluğu kilometre, mikrometre olabilir ve plazma içinde uzun bir lif oluşumunu sağlar.[34] İpliklenmenin ilginç bir yönü, plazma iyonize elektron etkisini odaktan uzaklaştırmasından dolayı göreceli olarak düşük iyon yoğunluğu oluşturmasıdır.[35]
Şoklar veya Çift Katmanlar
Plazma özellikleri bir şok (hareketli) veya (sabit) çift katmanlı varlığında iki boyutlu bir tabaka boyunca (birkaç Debye uzunluğu içinde) hızla değişir. Çift katmanlar tabaka boyunca büyük bir potansiyel farkına neden olur, ancak katmanın dışında bir elektrik alanı oluşturmaz, lokalize şarj ayırma içerir. Çift tabakalar farklı fiziksel özelliklere sahiptir, bitişik plazma bölgelerini ayırırlar ve genellikle akım taşıyan plazmalarda bulunurlar. İyonları ve elektronları hızlandırırlar.
Elektrik Alanları ve Devreler
Bir plazmanın yarı tarafsızlığı, o plazma akımının elektrik devrelerini kendilerine kapatır. Bu tür devreler Kirchhoff'un devre yasalarını takip eder ve indüktans direncine sahiptirler. Bu devreler, genel olarak, tüm devreye bağımlı bir plazma bölgesinde güçlü bir şekilde eşlenmiş bir sistem ile düzeltilirler. Bu durum sistem elemanları ile aralarında doğrusal olmayan güçlü bir karmaşıklığa neden olur. Elektrik plazma mağazaları indüktif (manyetik) enerji devreleri ve devrelerin kesilmesi gerektiğinde, örneğin bir plazma istikrarsızlığında, endüktif enerji plazma ısıtma ve ivme olarak piyasaya sürülür. Bu güneş tacında gerçekleşen ısıtma için ortak bir açıklamadır. Elektrik akımları ve özellikle de (genel olarak "Birkeland akımları" olarak ifade edilmektedir) manyetik alan hizalı elektrik akımları ile, yeryüzünde gözlenen plazma filamentleri elde edilir.
Hücresel Yapı
Keskin eğilimleri olan dar yaprak hücre benzeri bölgelerde sonuçlanan, mıknatıslanma yoğunluğu ve sıcaklık gibi farklı özelliklere sahip bölgeler ayrı olabilir. Örnekler; manyetosfer, helyosfer ve heliosferik akım levhası. Hannes Alfvén yazdı: "Kozmolojik açıdan bakıldığında, yeni uzay araştırmalarında en önemli keşif büyük bir ihtimalle hücre yapısıdır. Yerinde ölçümler için erişilebilir uzayın her bölgesinde görüldüğü gibi, 'hücre duvarları, farklı mıknatıslanma, sıcaklık, yoğunluk vb' elektrik akımlarını bölecek bir dizi levha vardır."[36]
Kritik iyonlaşma hızı
Kritik iyonlaşma hızı bir iyonize plazma ve kaçar bir iyonlaşma işlemi gerçekleştiğinde bir nötr haz ile arasındaki göreceli hızdır. Kritik iyonlaşma işlemi iyonlaşmayı ve plazma termal enerjili bir hızlı akış hazın kinetik enerjisinin dönüştürülmesi için gereken genel bir mekanizmadır. Genel olarak kritik olaylar sistemlerde tipik ve keskin bir mekansal ya da zamansal özelliklere neden olabilir.
Aşırı Soğuk Plazma
Aşırı soğuk plazma kaçmak için yeterli dış elektronlarını vererek atomuna iyoniza için başka bir lazer kullanarak daha sonra yakalama ve nötr atomuna soğutma için 1mK ya da daha düşük sıcaklıklara ve bir manyeto-optik uzak (motor) oluşturulan üst iyonunun elektriksel çekimidir.
Aşırı soğuk plazmanın bir avantajı, boyutu ve elektron sıcaklığı dahil olmak üzere karakterize edilmiş ve ayarlanabilir başlangıç koşullarının olmasıdır. İyonlaştırıcı lazerin dalga boyunu ayarlayarak, kurtarılmış elektronların kinetik enerjisi 0.1 K, lazer darbesinin frekans bant genişliği ile belirlenen limit gibi düşük ayarlanmış olabilir. İyonları nötr atomların milikelvin sıcaklıkları miras olarak, ama hızla bozukluğu ısıtma (DISH) kaynaklı olarak bilinen bir süreç yoluyla ısıtılır. Bu tip denge dışı aşırı soğuk plazmalar bu şekilde hızla gelişir ve birçok ilginç olay sergiler.[37]
Güçlü bir ideali olmayan plazmanın metastabl devletlerin biri heyecanlı atomların yoğunlaşması üzereni oluşturan Rydnerg konudur.
Nötr Olmayan Plazma
Güç ve elektrik kuvvet aralığı ve plazmaların iletkenliği genellikle herhangi bir bölgede pozitif ve negatif yüklerin yoğunlukları (yarı tarafsızlık)nın eşitliğiyle sağlanır. Yük yoğunluğunun önemli bir fazlası ile bir plazma ya da uç bir durumda, nötr olmayan plazma olarak adlandırılan bir tür oluşur. Bu gibi bir plazma içinde, elektrik alan baskın bir rol oynamaktadır. Örnekler parçacık ışınları, Penning tuzağındaki bir elektron bulutu ve pozitron plazmalardır.[38]
Tozlu plazma / Tane plazması
Tozlu plazma (genellikle uzayda bulunan) minik toz yüklü parçacıkları içerir. Toz parçacıkları yüksek yükler kazanır ve birbirleri ile etkileşirler. Daha büyük parçacıklar içeren bir plazmaya tane plazma denir. Laboratuvar koşullarında, tozlu plazmalara karmaşık plazmalar denir.[39]
Geçirimsiz plazma
Geçirimsiz plazma gazı veya soğuk plazma, geçirgen olmayan bir katı gibi davranır ve fiziksel olarak itilebilir, termal bir plazma türüdür. Soğuk gaz ve termal plazma etkileşimi kısaca reaktör duvarlarından füzyon plazma yalıtımında olası uygulamalar 1960'lar ve 1970'lerde Hannes Alfven liderliğindeki bir grup tarafından incelenmiştir.[40] Ancak daha sonra bu yapılandırmada dış manyetik alanların plazmada kink istikrarsızlıklara ve duvarlarda beklenmedik yüksek ısı kaybına yol açabileceği tespit edildi.[41] 2013 yılında, madde bilim adamlarından oluşan bir grup, soğuk gazın sadece yüksek basınçlı battaniye kullanılarak hiçbir manyetik hapis olmadan istikrarlı geçirimsiz plazma oluşturulabileceğini bildirdi. Plazma özelliklerine spektroskopik veriler, yüksek basınç elde etmenin zor olduğunu iddia ederken, farklı nano sentezi üzerindeki plazma pasif etkisi hapsini önerdi. Ayrıca saniyenin onda biri için sızdırmazlığı muhafaza üzerine, plazma gazı arayüzünde iyonlarının tarama reaksiyonları ve kompleks nano oluşumu farklı kinetik giden (viskoz ısıtma olarak da bilinir) ısıtılması güçlü bir ikincil moda yol açabilir.[42]
Matematiksel açıklamalar
Plazmanın durumunu açıklamak için, tüm parçacık konumları ve hızları yazmak ve plazma bölgedeki elektromanyetik alanı tanımlamak gerekir. Bununla birlikte, bir plazma içindeki tüm partikülleri takip etmek için, genel olarak pratik ve gerekli değildir. Bu nedenle, plazma fizikçilerin genellikle kullandıkları daha az ayrıntılı iki türü vardır
Sıvı modeli
Sıvı modeller her bir pozisyon etrafında ortalama hız ve düzeltilen yoğunluk miktarları açısından plazmaları tanımlar. Basit bir sıvı modeli, plazmaya manyeto hidrodinamikler, Maxwell denklemleri ve Navier-Stoke denklemlerinin bir kombinasyonu ile yönetilen tek bir sıvı gibi davranır. Daha genel bir açıklama iyonlar ve elektronların ayrı ayrı açıklandığı iki sıvı plazma görüntüsü vardır. Collisionality bir Maxwell-Boltzmann dağılımına yakın plazma hız dağılımını tutmak için yeterince yüksek olduğunda sıvı modeller genellikle doğrudur. Çünkü sıvı modeller genellikle her uzamsak yerde belirli bir sıcaklıkta tek bir akış açısından plazma tarifi olduğundan, kiriş veya çift katmanları gibi ne yakalama hızı uzay yapıları, ne de dalga-parçacık efektleri ile çözebilirsiniz.
Kinetik modeli
Kinetik modeller plazmada her noktada parçacık hızı dağılım fonksiyonunu tanımlar ve bu nedenle Maxwell-Boltzmann dağılımını varsaymak gerekmez. Bir kinetik açıklama çarpışmasız plazmalar için genellikle gereklidir. Bir plazmada kinetik bilgi için iki genel yaklaşım vardır. Bir hız ve konumda, bir ızgara üzerinde süzülmüş dağılma fonksiyonunu temsile dayanır. Parçacık-hücre (PIC) tekniği olarak bilinen ve tek tek parçacıkların çok sayıdaki yörüngeleri kinetik bilgi içerir. Kinetik modeller sıvı modellere göre daha yoğun hesaplanırlar. Vlasov denklemi bir elektromanyetik alan ile etkileşimde yüklü parçacıkların sistem dinamiklerini tanımlamak için kullanılabilir. Manyetize plazmalardaki, gyro kinetik yaklaşım tamamen kinetik simülasyon hesaplamayla azaltılabilir.
Yapay plazmalar
Çoğu yapay plazmalar, elektrik ve/veya manyetik alanların uygulanmasıyla oluşturulur. Bir laboratuvar ortamında ve endüstriyel kullanım için üretilen plazma genellikle şu şekilde kategorize edilebilir:
Güç kaynağı tipi plazma DC, RF ve mikrodalga oluşturmak için kullanılan
Basınç faaliyetinde vakum basıncı (<10 mTorr ya da 1 Pa), orta basınç altında (~1 Torr ya da 100 Pa), atmosferik basınçta (760 Torr veya 100 kPa)
Plazma içindeki iyonlaşma derecesi olarak tam, kısmen veya zayıf iyonlaşmış
Plazma-termik plazma içindeki sıcaklık ilişkileri (), termal olmayan ya da "soğuk" plazma ()
Plazma oluşturmak için kullanılan elektrot konfigürasyonu
Magnetize plazma (manyetik alan tarafından Larmor yörüngede sıkışan iyon ve elektronlar), kısmi manyetize (iyonları manyetik alan tarafından tutulan elektronlar), manyetize olmayan (manyetik alan içinde parçacıkların manyetizasyonu) yörüngelerde parçacıklar tutarak çok zayıf ama Lorentz kuvvetler oluşturabilir
Uygulama
Yapay plazma üretimi
Plazmanın birçok kullanımı gibi, üretimi için de çeşitli malzemeler vardır; ancak, bunların hepsi için ortak bir prensip vardır: üretmek ve bunu sürdürebilmek için enerji girişi olmalı.[44] Bir elektrik akımı, bir dielektrik gaz ya da basit bir örnek olarak, bir deşarj tüpünü gösteren ❗️sağ resimde görüldüğü gibi sıvı (elektriksel olarak iletken olmayan bir malzeme) üzerinde uygulandığında plazma oluşturulur (DC kullanılan sadelik).
Katot (negatif elektrot) çekirdeğini çekerken potansiyel fark ve sonraki elektrik alan anot (pozitif elektrot) doğru bağlı elektronlar (negatif).[45] Gerilim arttıkça, mevcut dielektrik sınırının ötesine (elektrik kutuplaşma) tarafından malzemeyi vurgular (vadeli gücü), malzemenin bir iletkenin içine yalıtkan olmaktan dönüştüren bir elektrik kıvılcımı ile işaretlenmiş bir elektrik arıza sahne içine (giderek iyonize olur gibi). Altta yatan süreç (❗️sağdaki şekilde görüldüğü gibi) elektron ve nötr gaz atomları arasındaki çarpışmalar daha fazla iyonlar ve elektronlar oluşturmak için Townsend çığı vardır. Atom sonuçlarında ilk elektronun tek iyon ve iki elektron etkilidir.[46] u nedenle, yüklü parçacıkların sayısı "çarpışmaların yaklaşık 20 ardışık setinden sonra" (milyon) hızla artar, ortalama olarak serbest yolu nedeniyle (ortalama mesafe çarpışmalar arasına) gider."
Elektrik arkı
Yeterli akım yoğunluğu ve iyonlaşma ile, bu, elektrotlar arasında bir ışık elektrik arkı (yıldırım, sürekli bir elektrik deşarjına benzer) oluşturur.[Note 1] daha fazla gaz moleküllerini ayıran ve (iyonlaşma derecesi sıcaklığı ile belirlenen) ortaya çıkan atomlar iyonize olur ve birim sekansta, sürekli elektrik arkı boyunca elektriksel direnç ısı oluşturur: solid-liquid-gas-plasma, the gas is gradually turned into a thermal plasma.[Note 2]Sıcaklık ağır parçacıklar ve elektronlar boyunca nispeten homojen olduğunu söyleyen bir ısıl plazma ısısal denge halindedir. (örn: atomlar moleküller ve iyonlar). Çünkü termal plazmalar oluştuğunda bu böyledir, elektrik enerjisi, yüksek hareketliliklerinden ve büyük numaralarından dolayı, elektronlarla verilir, bu ağır parçacıkların elastik çarpışmasıyla ve onu hızla dağıtması mümkündür.[47][Note 1]
Ticari / endüstriyel plazmanın örnekleri
Onların büyükçe sıcaklık ve yoğunluk aralıklarından dolayı, plazmaların, araştırma, teknoloji ve sanayinin birçok alanında uygulamalarını bulabilirsiniz. Örneğin, Endüstriyel ve çıkarma metalurjisi,[47] plazma püskürtme olarak yüzey işlemler(kaplama), mikroelektronik dağlama,[48] metal kesme,[49] ve kaynak; bunlarla birlikte, günlük araç egzoz temizleme ve floresan/ışıldayan lamba gibi,[44] hatta uzay mühendisliği için süpersonik yanmalı motorlarda bir rol oynarken.[50]
Düşük basınç deşarjları
Parıltılı deşarj plazması: iki metal elektrotlar arasındaki boşluğa DC veya düşük frekanslı RF (<100 kHz) elektrik alanının uygulanmasıyla üretilen termal olmayan plazma.Muhtemelen en yaygın plazma; Bu floresan ışık tüpleri içinde üretilen plazma türüdür.[51]
Kapasitif eşleşmiş plazma (CCP): parıltılı deşarj plazmalarına benzer, ancak yüksek frekanslı RF elektrik alanları ile oluşturulur, tipik 13.56 MHz. Bunlar, çok daha az yoğun kılıflarda parıltılı deşarj plazmalarından farklıdır. Bunlar yaygın olarak mikrofabrikasyon kullanılır ve plazma aşındırma için devre üretim endüstrileri oluşturur ve plazmayla kimyasal buhar depozisyon geliştirilir.[52]
Aşamalı Ark plazma kaynağı: Bir aygıt düşük sıcaklık üretmek için (~ 1EV) yüksek yoğunluklu plazma (HDP).
İndüktif eşleşmiş plazma (ICP): CCP'ye benzer ve benzer uygulamalar ile Plazma meydana getirildiği yerlerde elektrot gözünden sarılı bir bobin oluşmaktadır.[53]
Dalga ısıtmalı plazma: CCP'ye benzer ve ICP deki genellikle Rf (veya mikrodalga). Örnekler helicon akıntı ve elektron siklotron rezonanslarını içerir (ECR).[54]
Atmosfer basıncı
Ark boşalma: Bu çok yüksek sıcaklığın yüksek güç termal deşarjıdır (~ 10.000 K).Çeşitli güç kaynakları kullanılarak oluşturulabilir. Genellikle metalürjik işlemlerde kullanılır. Örneğin, alüminyum üretmek için Al2O3 ihtiva eden kokusu mineraller için kullanılır.
Korona deşarjı: Bu, keskin elektrot uçlarına yüksek gerilim uygulama ile oluşturulan bir ısısal olmayan akıntıdır. Yaygın olarak ozon jeneratörleri ve parçacık çökelticilerinde kullanılır.
Dielektrik bariyer deşarjı (DBD): Bu küçük boşluklar boyunca yüksek gerilimlerin uygulaması ile oluşturulan bir termal olmayan deşarjdır, burada iletken olmayan bir kaplama, bir yay şeklinde plazma deşarj geçişini engeller. Genellikle 'Korona' deşarjı endüstride yanlış etiketlendirilir ve korona deşarjlarına benzer uygulamalar vardır. Ayrıca, yaygın olarak kumaşların ağ sürecinde kullanılır.[55] Sentetik kumaşlara ve plastiğe deşarj uygulaması yüzeyi fonksiyonelleştiren boyalar, yapıştırıcılar ve yapıştırmaya yarayan benzer malzemeler için izin verilir.[56]
Kapasitif deşarj: Bu bir güç verilmiş elektrota RF güç uygulanması ile üretilen bir termal olmayan plazma (örn., 13.56 MHz), 1 cm için küçük bir ayırma mesafesi düzenlenen topraklanmış elektrot ile. Bu tür boşaltımlar yaygın olarak helyum veya argon gibi bir soy gaz kullanılarak stabilize edilmektedir.[57]
"Piezoelektrik doğrudan deşarj plazma:" bir piezoelektrik transformatörün yüksek tarafında oluşturulan termal olmayan bir plazmadır (PT). Bu kuşak varyantı özellikle yüksek verim ve ayrı bir yüksek gerilim güç kaynağı arzu etmeyen kompakt cihazlar için uygundur.
Tarih
Plazma ilk Crookes yılında Sir William Crookes tarafından açıklandı ("radyant madde" olarak adlandırdı).[58] Crookes tüpü doğası "katot ışını" meselesi sonradan 1897 yılında İngiliz fizikçi Sir J. J. Thomson tarafından tespit edildi.[59] "Plazma" ismi 1928 yılında Irving Langmuir tarafından verildi[60] belki de Crookes tüpünde parlayan şekli (Gr. πλάσμα – kalıplaşan ve oluşturulan şey) nedeniyle bu isim seçildi.[61] Langmuir gözlemlerini şu şekilde tarif etti:
Yakın elektrotlar hariç, burada çok az elektronları içeren kılıfları vardır, iyonize gaz yaklaşık eşit sayıda iyonlar ve elektronları içerir böylece elde edilen alan yükü çok azdır. Biz iyonların ve elektronların dengeli yüklerini içeren bu bölgeyi tanımlamak için plazma ismini kullanmalıyız.[60]
Notlar
^Note that non-thermal, or non-equilibrium plasmas are not as ionized and have lower energy densities, and thus the temperature is not dispersed evenly among the particles, where some heavy ones remain ‘cold’.
Kaynakça
^πλάσμα 24 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi., Henry George Liddell, Robert Scott, A Greek–English Lexicon, on Perseus
^Luo, Q-Z; D'Angelo, N; Merlino, R. L. (1998). "Shock formation in a negative ion plasma"(PDF). 5 (8). Department of Physics and Astronomy. 31 Ağustos 2016 tarihinde kaynağından(PDF) arşivlendi. Erişim tarihi: 20 Kasım 2011.
^"Ionization and Plasmas". The University of Tennessee, Knoxville Department of Physics and Astronomy. 14 Kasım 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Mart 2017.
^Hastings, Daniel; Garrett, Henry (2000). Spacecraft-Environment Interactions. Cambridge University Press. ISBN978-0-521-47128-2.
^Peratt, A. L. (1996). "Advances in Numerical Modeling of Astrophysical and Space Plasmas". Astrophysics and Space Science. 242 (1–2). ss. 93-163. Bibcode:1996Ap&SS.242...93P. doi:10.1007/BF00645112.
^Yaffa Eliezer, Shalom Eliezer, The Fourth State of Matter: An Introduction to the Physics of Plasma, Publisher: Adam Hilger, 1989, ISBN 978-0-85274-164-1, 226 pages, page 5
^Mészáros, Péter (2010) The High Energy Universe: Ultra-High Energy Events in Astrophysics and Cosmology, Publisher Cambridge University Press, ISBN 978-0-521-51700-3, p. 99 2 Aralık 2016 tarihinde Wayback Machine sitesinde arşivlendi..
^Dickel, J. R. (1990). "The Filaments in Supernova Remnants: Sheets, Strings, Ribbons, or?". Bulletin of the American Astronomical Society. Cilt 22. s. 832. Bibcode:1990BAAS...22..832D.
^Brown, Sanborn C. (1978). "Chapter 1: A Short History of Gaseous Electronics". HIRSH, Merle N. e OSKAM, H. J. (Ed.). Gaseous Electronics. 1. Academic Press. ISBN978-0-12-349701-7.KB1 bakım: Birden fazla ad: editör listesi (link)
The Dawn of the EmpirePoster promosiGenreSejarahDitulis olehLee Hwan-kyungSutradaraJun Sung-hongKim Hyung-ilLee Won-ikPemeranKim Sang-joongJun Hye-jinChoi Jae-sungHong Ri-naKim Min-wooNegara asalKorea SelatanBahasa asliKoreaJmlh. episode94Rilis asliJaringanKBS1Rilis2 Maret 2002 (2002-03-02) –26 Januari 2003 (2003-1-26) Korean nameHangul제국의 아침 Hanja帝國의 아침 Alih AksaraJegug-ui achimMcCune–ReischauerChegugŭi ach'im The Dawn of the Empire (Hangul: ...
Botol air Ethos Ethos Water, anak perusahaan Starbucks, adalah merek air kemasan dengan misi sosial membantu anak-anak mendapatkan air bersih. Ethos berdiri tahun 2001 ketika Peter Thum mendapatkan ide setelah bekerja di beberapa permukiman Afrika Selatan yang tidak memiliki akses ke air bersih. Thum, yang bekerja sebagai konsultan untuk McKinsey & Company pada waktu itu, menyadari potensi membuat merek air kemasan untuk meningkatkan kesadaran dan pendanaan program air bersih. Ide ini men...
Lemula Lemula bruneipennis Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Lemula Lemula adalah genus kumbang tanduk panjang yang berasal dari famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang telah ditebang. Referen...
Town in Texas, United StatesMount Vernon, TexasTownHouston Street in downtown Mount VernonMotto: A Texas Treasure[1]Location in Franklin County and the state of Texas.Coordinates: 33°10′55″N 95°13′27″W / 33.18194°N 95.22417°W / 33.18194; -95.22417CountryUnited StatesStateTexasCountyFranklinArea[2] • Total4.40 sq mi (11.40 km2) • Land4.31 sq mi (11.17 km2) • Water0.09...
Kategoria e Parë 1981-1982 Competizione Kategoria e Parë Sport Calcio Edizione 43ª Organizzatore FSHF Date dal 6 settembre 1981al 23 marzo 1982 Luogo Albania Partecipanti 14 Risultati Vincitore 17 Nëntori(11º titolo) Retrocessioni 31 Korriku24 Maji Statistiche Miglior marcatore Vasil Ruci (12) Incontri disputati 182 Gol segnati 354 (1,95 per incontro) Cronologia della competizione 1980-1981 1982-1983 Manuale La Kategoria e Parë 1981-1982 fu la 43ª edizione dell...
Fenerbahçe 2012–13 football seasonFenerbahçe2012–13 seasonPresidentAziz YıldırımHead coachAykut KocamanStadiumŞükrü Saracoğlu StadiumSüper Lig2ndTurkish CupWinnersTurkish Super CupRunners-up(lost to Galatasaray)UEFA Champions LeaguePlay-off round(lost to Spartak Moscow)UEFA Europa LeagueSemi-finals(lost to Benfica)Top goalscorerLeague: Moussa Sow (15)All: Moussa Sow (19)Highest home attendance50,025 vs. Galatasaray(12 May 2013, Süper Lig)Lowest home attendance5,000 vs. Sivasspo...
Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...
Buck HenryHenry pada tahun 1978LahirHenry Zuckerman(1930-12-09)9 Desember 1930Kota New York, Amerika SerikatMeninggal8 Januari 2020(2020-01-08) (umur 89)Los Angeles, California, Amerika SerikatPendidikanPerguruan Tinggi DartmouthPekerjaanPenulis skenario, aktor, sutradara, pelawak, produserTahun aktif1961–2015Suami/istriSally ZuckermanIrene Ramp[1]Orang tuaPaul Steinberg Zuckerman (ayah)Ruth Taylor (ibu) Buck Henry (nama lahir Henry Zuckerman;[1] 9 Desember 1930...
PopCap Games, Inc.JenisSubsidierIndustriIndustri permainan videoDidirikan2000; 24 tahun lalu (2000)PendiriJohn VecheyBrian FieteJason KapalkaKantorpusatSeattle, Washington, U.S.TokohkunciMatt Nutt (manajer umum)[1]ProdukDaftar permainanKaryawan~400[2] (2010)IndukElectronic Arts (2011–sekarang)DivisiPopCap VancouverPopCap ShanghaiPopCap HyderabadSitus webea.com/studios/popcap PopCap Games, Inc. adalah sebuah perusahaan pengembang permainan video Amerika Serikat yang...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
International athletics championship event2012 British Indoor Athletics ChampionshipsDates11–12 FebruaryHost citySheffieldVenueEIS SheffieldLevelSenior nationalTypeIndoorEvents24← Sheffield 2011 Sheffield 2013 → British Indoor Athletics Championships The 2012 British Indoor Athletics Championships was the sixth edition of the national championship in indoor track and field for the United Kingdom. It was held from 11–12 February 2012 at the English Institute of Sport, Sheffiel...
Malicious entity in Germanic and Slavic folklore This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Mare folklore – news · newspapers · books · scholar · JSTOR (January 2014) (Learn how and when to remove this message) The Nightmare, by Henry Fuseli, 1781 A mare (Old English: mære, Old Dutch: mare, Proto-...
Gulf Coast redirects here. For other uses, see Gulf Coast (disambiguation). Coastline in the United StatesGulf CoastCoastlineStates that border the Gulf of Mexico are shown in red.Country United StatesStates Alabama Florida Louisiana Mississippi TexasPrincipal citiesHoustonTampa MobileNew OrleansPensacolaGulfportTallahasseeLargest cityHoustonLargest metropolitan areaGreater HoustonPopulation • Total64,008,345[1] The Gulf Coast of the United St...
Genus of single-celled organisms This article is about the protozoan. For the disease, see Cryptosporidiosis. Do not confuse Cryptosporidium (protists) with Cryptococcus (fungi). Not to be confused with cryptocurrency, also known as crypto. This article is missing information about effects of Cryptosporidium infection on groups of animals other than mammals. Please expand the article to include this information. Further details may exist on the talk page. (August 2023) Cryptosporidium Oocysts...
7-ма група сил спеціальних операцій армії США7th Special Forces Group (United States) Емблема 7-ї групи на беретНа службі 9 липня 1942 — 19451960 — по т.ч.Країна СШАНалежність Сили спеціальних операцій СШАВид армія СШАТип Сили спеціальних операцій СШАРоль ведення спеціальних операційЧи...
Calihan HallGénéralitésNoms précédents Memorial Building (1952-1977)Surnom Dick VitaleAdresse Détroit, comté de Wayne, Michigan États-UnisConstruction et ouvertureOuverture 25 mai 1952UtilisationClubs résidents Detroit Mercy TitansPropriétaire Université de Detroit MercyAdministration Université de Detroit MercyÉquipementCapacité Basket-ball: 7 917LocalisationCoordonnées 42° 24′ 51″ N, 83° 08′ 09″ O Géolocalisation sur la cart...
ميّز عن مجموعة تاليس. طاليس (بالإغريقية: Θαλῆς ὁ Μιλήσιος) معلومات شخصية الميلاد سنة 625 ق م [1][2][3][4][5][6] ملطية[7] الوفاة العقد 540 ق.م[8][9][10][11] ملطية سبب الوفاة ضربة الشمس[12] الإقامة ملطية الحيا...
Untuk musim kedua puluh dari serial animasi Pokémon, lihat Daftar episode Pokémon: Sun & Moon. Pokémon SunPokémon Moon Gambar kemasan Amerika Utara untuk Pokémon Sun, menampilkan Pokémon Legendaris SolgaleoTipePokémon paired versions (en) Versi pertamaWW: 18 November 2016EU: 23 November 2016GenrePermainan video bermain peranKarakteristik teknisPlatformNintendo 3DS ModePermainan video pemain tunggal dan permainan video multipemain FormatROM cartridge dan unduhan digital Informasi pe...