Doğrusal dönüşüm, bir fonksiyon çeşididir. T, M boyutlu bir vektörden N boyuta bir doğrusal dönüşüm ise, o zaman;
ve herhangi bir sayı olan c için:
Eğer bu koşullar T için doğruysa, o zaman T,doğrusal bir dönüşümdür.
Her doğrusal dönüşüm, olarak ifade edilebilir. Burada A, bir matris'i temsil etmektedir. T bir dönüşüm matrisi olarak ifade edilebilir.
Tanımı ve ilk sonuçları
Diyelimki V ve W vektör uzayı aynı Kalanı üzerinde olsun. Bir fonksiyonf: V → W idi.Herhangi iki vektör x ve y in V ve herhangi skaler α ve K bir lineer haritalama' ise, aşağıdaki iki koşul tatmin edici:
Bu vektörlerin herhangi bir doğrusal kombinasyonunun için de aynı gereken eşdeğerdir,x1, ..., xm ∈ V ve skalerler a1, ..., am ∈ K, aşağıdaki eşitlik tutar:
α = 0 açı 1'in homojenitesi için denklem 0V ve 0W sıralanarak Vektör uzaylarının sıfır unsurlar ifade edenV ve W, bunlar aşağıdadır. f(0V) = 0W sağlıyor,
Bazen,V ve W farklı alanlar üzerinde vektör uzayları olarak kabul edilebilir. Bu temel alanların tanımında kullanılmakta "doğrusal" olduğunu daha sonra belirtmek gerekir. Biz K-lineer haritalaması hakkında konuşuyoruz, eğer V ve W alanın üzerine uzay olarak kabul edilenK yukarıdaki gibi ise, Örnek için, karmaşık sayılarıneşlenik bir R-lineer haritalamadır C → C, amaC-lineer değildir.
lineer harita V den Kya (bir vektör uzayı kendi üzerinde K ile gösterilen) bir doğrusal fonksiyonal olarak adlandırılır.
Bu tabloların genellemesi herhangi bir halka üzerindeR değişiklik olmadan sol-modül RMdir.