Read other articles:
English singer and actress Kéllé BryanBryan in 2019Born (1975-03-12) 12 March 1975 (age 49)Plaistow, London, EnglandAlma materItalia Conti Academy of Theatre ArtsOccupationsSingeractressYears active1991–presentSpouses Jay Gudgeon (m. 2010)Children2Musical careerGenres R&B gospel soul InstrumentsVocalsLabels EMI Mercury Formerly ofEternal Musical artistWebsitewww.kellebryan.co.uk Kéllé Bryan (born 12 March 1975) is an English singer and a...
Penghargaan JnanpithKategoriSastra (Individual)DeskripsiPenghargaan sastra di IndiaDiinstitusikan1961Penghargaan pertama1965Penghargaan terakhir2017Total yang diberi penghargaan56Dianugerahi olehKrishna SobtiBiaya penghargaan₹11 lakh (US$15,000)Penerima pertamaG. Sankara KurupPenerima saat iniRaghuveer Chaudhari Penghargaan Jnanpith adalah sebuah penghargaan sastra India yang dipersembahkan setiap tahun oleh Bharatiya Jnanpith kepada seorang pengarang untuk kontribusi menakju...
Tempat sampah daur ulang di Jepang Daur ulang di Jepang (リサイクルcode: ja is deprecated , Risaikuru), adalah aspek dalam pengelolaan sampah di Jepang, didasarkan pada Undang-Undang Daur Ulang Wadah dan Kemasan Jepang. Plastik, kertas, botol PET, aluminium dan kaca dikumpulkan dan didaur ulang. Profil negara Jepang dalam Waste Atlas menunjukkan bahwa tingkat daur ulang pada tahun 2012[butuh klarifikasi] sebesar 20.8%.[1][perinci lagi] Undang-Undang Daur Ulang Wad...
Questa voce sull'argomento metrologia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Chilometro quadratoInformazioni generaliGrandezzasuperficie Simbolokm² Conversioni 1 km² in... ...equivale a... Unità SI1×106 m² Unità CGS1×1010 cm² Unità US/Imp≈0,386102 mi² Unità di Planck≈3,828×1075 l2P Unità atomiche≈3,571×1026 a20 Modifica dati su Wikidata · Manuale Rappresentazione della definizione di chilometro quadrat...
Jan Oblak Oblak bersama Atlético Madrid pada 2019Informasi pribadiNama lengkap Jan Oblak[1]Tanggal lahir 7 Januari 1993 (umur 31)Tempat lahir Škofja Loka, SloveniaTinggi 189 cm (6 ft 2 in)[2]Posisi bermain Penjaga gawangInformasi klubKlub saat ini Atlético MadridNomor 13Karier junior1998–2003 Ločan2003–2005 Olimpija2005–2009 Olimpija LjubljanaKarier senior*Tahun Tim Tampil (Gol)2009–2010 Olimpija Ljubljana 34 (0)2010–2014 Benfica 16 (0)2010 �...
Sports stadium in Parma, Italy Stadio comunale Ennio TardiniIl TardiniThe monumental entrance arch to the stadiumFormer namesStadio Municipale (1922–1923)LocationViale Partigiani d'Italia, 1 43123 Parma, ItalyCoordinates44°47′41.7″N 10°20′18.4″E / 44.794917°N 10.338444°E / 44.794917; 10.338444OwnerMunicipality of ParmaCapacity27,906 (often just 22,352 allowed) [1]Field size105 x 68 mSurfaceGrassConstructionBroke ground26 December 1922Opened16 Sept...
Part of a series on Sahitya Akademi Awards Category Sahitya Akademi Award winners by language Assamese Bengali Bodo Dogri English Gujarati Hindi Kannada Kashmiri Konkani Maithili Malayalam Marathi Meitei (Manipuri) Nepali Odia Punjabi Rajasthani Sanskrit Santali Sindhi Tamil Telugu Urdu Sahitya Akademi Translation Prizes Assamese Bengali Bodo Dogri English Gujarati Hindi Kannada Kashmiri Konkani Maithili Malayalam Marathi Meitei (Manipuri) Nepali Odia Punjabi Rajasthani Sanskrit Santali Sind...
Calendar year Millennium: 2nd millennium Centuries: 18th century 19th century 20th century Decades: 1850s 1860s 1870s 1880s 1890s Years: 1876 1877 1878 1879 1880 1881 1882 1879 by topic Humanities Archaeology Architecture Art Literature Poetry Music By country Australia Belgium Brazil Canada China Denmark France Germany New Zealand Norway Portugal Russia South Africa Spain Sweden United Kingdom United States Other topics Rail transport Science Sports Lists of leaders Sove...
Every polynomial has a real or complex root Not to be confused with Fundamental theorem of arithmetic or Fundamental theorem of linear algebra. The fundamental theorem of algebra, also called d'Alembert's theorem[1] or the d'Alembert–Gauss theorem,[2] states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary...
American astronomer This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: David Louis Band – news · newspapers · books · scholar · JSTOR (January 2014) David Louis BandBorn(1957-01-09)January 9, 1957Boston, United StatesDiedMarch 16, 2009(2009-03-16) (aged 52)Potomac, Maryland, United StatesResting ...
Арминий, национальный герой Германии[1]. Памятник Арминию 1838 года Национальный герой — личность, идеализированный образ которой стал частью национального политического мифа, служащего персонализации истории. Сложность исторических и политических процессов нив�...
Economic issues in China Parts of this article (those related to documentation) need to be updated. Please help update this article to reflect recent events or newly available information. (May 2020) Share of population in extreme poverty over time In China today, poverty refers mainly to the rural poor. Decades of economic development has reduced urban extreme poverty.[1][2][3] According to the World Bank, more than 850 million Chinese people have been lifted out of e...
National volleyball team This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability ca...
Transition of a liquid to vapor This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Vaporization – news · newspapers · books · scholar · JSTOR (September 2023) (Learn how and when to remove this message) Vaporization (or vaporisation) of an element or compound is a phase transition from the liquid phase to vapor...
Indigenous Polynesian people of the Chatham Islands Not to be confused with Māori people, Maouri people, or Mauri. This article is about the Moriori people. For the language, see Moriori language. Ethnic group MorioriMoriori family, c. 1910Total populationapprox. 1,000 (2018 census)[1]Regions with significant populationsChatham Islands36 (2013 census)[2]North Island354 (2013 census)[2]South Island348 (2013 census)[2]LanguagesEnglish, Māori, formerly Mor...
Victoria Localidad VictoriaLocalización de Victoria en Región Metropolitana de Buenos AiresCoordenadas 34°27′00″S 58°34′00″O / -34.45, -58.566666666667Idioma oficial españolEntidad Localidad • País Argentina • Provincia Buenos Aires • Partido [[Archivo:|20x20px|border|Bandera de Partido de San Fernando]] San FernandoAltitud • Media 11 m s. n. m.Población (2001) • Total 39 447 hab.Ge...
この項目では、1979年放送のテレビドラマについて説明しています。1995年に『月曜ドラマ・イン』枠で放送されていたテレビドラマについては「花嫁は16才!」をご覧ください。 この記事の主題はウィキペディアにおける独立記事作成の目安を満たしていないおそれがあります。 目安に適合することを証明するために、記事の主題についての信頼できる二次資料を求めて...
Organization in Michigan Ethnic group Mackinac Bands of Chippewa and Ottawa Indianswww.mackinacband.comRegions with significant populationsUnited States (Michigan)LanguagesEnglish, Ojibwe (Ottawa)ReligionMidewiwin, Native American Church, Catholicism, Methodism, and ProtestantismRelated ethnic groupsOther Ojibwe and Odawa, Potawatomi and other Algonquian peoples The Mackinac Bands of Chippewa and Ottawa Indians is a non-profit organization for people who self-identify as being of Ojibwe and O...
1854–1902 Boer republic in Southern Africa This article is about the former Boer republic. For the former province of South Africa, see Orange Free State (province). For the current province of South Africa, see Free State (province). Orange Free StateOranje Vrijstaat (Dutch)Oranje Vrystaat (Afrikaans)1854–1902 Flag Coat of arms Motto: Geduld en MoedPatience and CourageAnthem: Vrystaatse VolksliedNational sealGreat Seal of the Orange Free StateLocation of the Orange Fr...
Special French court established to try cases of ministerial misconduct This article is part of a series onPolitics of France Constitutions Fifth Republic Declaration of the Rights of Man and of the Citizen Executive President (list) Emmanuel Macron (LREM) Prime Minister (list) Gabriel Attal (LREM) Government Attal Legislature National Assembly: Membership President: Yaël Braun-Pivet Senate President: Gérard Larcher Congress of the French Parliament Judiciary Constitutional Council Council...