Радон

Радон
Општа својства
Име, симболрадон, Rn
Изгледбезбојан гас
У периодноме систему
Водоник Хелијум
Литијум Берилијум Бор Угљеник Азот Кисеоник Флуор Неон
Натријум Магнезијум Алуминијум Силицијум Фосфор Сумпор Хлор Аргон
Калијум Калцијум Скандијум Титанијум Ванадијум Хром Манган Гвожђе Кобалт Никл Бакар Цинк Галијум Германијум Арсен Селен Бром Криптон
Рубидијум Стронцијум Итријум Цирконијум Ниобијум Молибден Технецијум Рутенијум Родијум Паладијум Сребро Кадмијум Индијум Калај Антимон Телур Јод Ксенон
Цезијум Баријум Лантан Церијум Празеодијум Неодијум Прометијум Самаријум Европијум Гадолинијум Тербијум Диспрозијум Холмијум Ербијум Тулијум Итербијум Лутецијум Хафнијум Тантал Волфрам Ренијум Осмијум Иридијум Платина Злато Жива Талијум Олово Бизмут Полонијум Астат Радон
Францијум Радијум Актинијум Торијум Протактинијум Уранијум Нептунијум Плутонијум Америцијум Киријум Берклијум Калифорнијум Ајнштајнијум Фермијум Мендељевијум Нобелијум Лоренцијум Радерфордијум Дубнијум Сиборгијум Боријум Хасијум Мајтнеријум Дармштатијум Рендгенијум Коперницијум Нихонијум Флеровијум Московијум Ливерморијум Тенесин Оганесон
Xe

Rn

Og
астатрадонфранцијум
Атомски број (Z)86
Група, периодагрупа 18 (племенити гасови), периода 6
Блокp-блок
Категорија  племенити гас
Рел. ат. маса (Ar)222,0175782(25)[1]
Масени број222 (најстабилнији изотоп)
Ел. конфигурација
по љускама
2, 8, 18, 32, 18, 8
Физичка својства
Тачка топљења202 K ​(−71 °‍C, ​−96 °F)
Тачка кључања211,5 K ​(−61,7 °‍C, ​−79,1 °F)
Густина на СТП (0 °‍C и 101,325 kPa)9,73 g/L
течно ст., на т.к.4,4 g/cm3
Критична тачка377 K, 6,28 MPa[2]
Топлота фузије3,247 kJ/mol
Топлота испаравања18,10 kJ/mol
Мол. топл. капацитет5R/2 = 20,786 J/(mol·K)
Напон паре
P (Pa) 100 101 102
на T (K) 110 121 134
P (Pa) 103 104 105
на T (K) 152 176 211
Атомска својства
Електронегативност2,2
Енергије јонизације1: 1037 kJ/mol
Ковалентни радијус150 pm
Валсов радијус220 pm
Линије боје у спектралном распону
Спектралне линије
Остало
Кристална структурапостраничноцентр. кубична (FCC)
Постраничноцентр. кубична (FCC) кристална структура за радон
Топл. водљивост3,61×10-3  W/(m·K)
Магнетни распореднемагнетичан
CAS број10043-92-2
Историја
ОткрићеЕрнест Радерфорд и Робер Б. Овенс (1899)
Прва изолацијаВилијам Ремзи и Роберт Вајтлоу-Греј (1910)
Главни изотопи
изотоп расп. пж. (t1/2) ТР ПР
210Rn syn 2,4 h α 206Po
211Rn syn 14,6 h ε 211At
α 207Po
222Rn trace 3,8235 d α 218Po
224Rn syn 1,8 h β 224Fr
референцеВикиподаци

Радон (Rn, лат. radon) племенити је гас са атомским бројем 86.[3] Име је добио по хемијском елементу радијуму. У периодном систему елемената налази се у шестој периоди. Познато је 27 радонових изотопа, који настају услед распада радиоактивног урана 238U, 235U и торијума 232Th. Већина тих изотопа има веома кратко време полураспада (мање од 1 сат). Изузетак су 3 изотопа радона: 222Rn — 3,8 дана, 211Rn - 14,7 сати и 210Rn — 2,5 сати. Најопаснији по животну средину је изотоп 222Rn. Он представља 80% свих радонових изотопа.[4] Радон за време свог распада емитује алфа зраке (емитује и бета зраке али у малој количини) велике јонизационе моћи.

Радон је једна од најгушћих супстанци која је у гасовитом стању под нормалним условима. Такође он је и једини гас који у нормалним условима има само радиоактивне изотопе те се због своје радиоактивности сматра опасним за здравље. Његова снажна радиоактивност такође онемогућава хемијске студије те је до данас познато само неколико његових једињења. Радон настаје као један од међупроизвода у нормалном радиоактивном ланцу распадања кроз који се торијум и уранијум полако распадају до стабилног олова. Торијум и уранијум су два најраспрострањенија радиоактивна елемента на Земљи, а на њој постоје од времена када је настала. Њихови природни изотопи имају врло дуга времена полураспада, у распонима од неколико милијарди година. Торијум и уранијум, њихов производ распада радијум и његов производ распада радон, стога ће у наредних неколико десетака милиона година остати у готово истом односу као што су и данас.[5] Како се и сам радон распада, он даје нове радиоактивне елементе зване кћерке радона тј. производе распада. За разлику од гасовитог радона, његови производи распада су у чврстом стању те се залепе за површину, као што су честице прашине у ваздуху. Ако се тако контаминирана прашина удахне, те честице се могу залепити за дисајне путеве у плућима и на тај начин повећати ризик од развоја рака плућа.[6]

За разлику од свих других елемената који се налазе у поменутом ланцу радиоактивног распада, радон је гасовит и лако доспева у дисајни систем. Стога, чак и у доба нуклеарних реактора, радон који се јавља у природи одговоран је за већину случајева излагања становништва јонизирајућем зрачењу. Често је и једини узрочник дозе позадинске радијације за неке особе, и врло често је промјењив у зависности од места. Упркос кратком времену полураспада, до гасовитог радона из природних извора може се акумулирати у концентрацијама много вишим од нормалних у неким просторијама, нарочито у нижим подручјима и нижим спратовима зграда те подрумима и каналима, углавном због своје тежине и густине. Такође се понегде може наћи и у природним изворима и геотермалним врелима.[7]

Епидемиолошке студије су доказале јасну вези између удисања високих концентрација радона и повећане појаве рака плућа. Стога се радон сматра значајним загађивачем који може утицати на квалитет ваздуха у просторијама широм света. Према подацима Америчке агенције за заштиту околине (ЕПА), радон је други узрочник рака плућа по учесталости, одмах након пушења дувана, узрокујући 21.000 смртних случајева годишње у САД-у. Око 2.900 од тих смртних случаја десило се особама које нису никад пушиле. Иако је међу пушачима на другом месту међу узрочницима смрти, радон је на првом месту међу узрочницима рака плућа код непушача, према проценама ЕПА.[8]

Особине

Физичке

Емисиони спектар радона који је фотографирао Ернест Радерфорд 1908. године. Бројеви покрај спектра означавају таласне дужине. Централни спектар је радонов, док су два са стране спектри хелијума (додати су због калибрисања таласних дужина).
Ланац распада уранијума-238.

Радон је безбојан гас, без укуса и мириса те се стога не може открити помоћу људских чула. При стандардним условима температуре и притиска, радон гради моноатомски гас густине 9,73 kg/m3,[9] што је око 8 пута гушће од Земљине атмосфере на нивоу мора, која износи 1,217 kg/m3.[10] Радон је један од најгушћих гасова при собној температури и најгушћи међу племенитим гасовима. Иако је при стандардним условима притиска и температуре без боје, када се охлади испод тачка топљења од 202 K (−71 °C), радон емитује сјајну радиолуминесценцију која прелази из жуте у наранџасто-црвену како се температура снижава.[11] Након кондензације, радон сјаји због интензивне радијације коју производи.[12] Он је врло слабо растворљив у води, али је много растворљивији од лакших племенитих гасова. Такође је знатно више растворљив у органским растварачима него у води.

Хемијске

Пошто је племенити гас, радон је у хемијском смислу врло слабо реактиван. Међутим, пошто је време полураспада радона-222 само 3,8 дана, то га чини врло корисним у физичким наукама као природни радиоактивни трасер (радиоизотопски индикатор).

Радон је члан елемената са нултом валенцијом који се зову и племенити гасови. Он је инертан у већини уобичајених хемијских реакција, попут сагоревања, јер његова спољна валентна љуска садржи осам електрона. То му даје стабилну конфигурацију са минималном енергијом у којој су спољни електрони врло снажно везани.[13] За издвајање једног електрона из његових љусака потребно је 1037 kJ/mol (такође позната и као прва енергија јонизације).[14] Међутим, према тредовима у периодном систему, он има нешто нижу електронегативност од елемента изнад њега у периодом систему, ксенона, те је стога реактивнији од њега. Раније студије су дошле до закључка да би стабилност радон хидрата требала бити на истом нивоу као и стабилност хидрата хлора (Cl
2
) или сумпор диоксида (SO
2
), односно значајно виша од стабилности хидрата водоник сулфида (H
2
S
).[15]

Због високих трошкова његовог добијања и радиоактивности, експериментална хемијска истраживања ретко се проводе са радоном. Као резултат тога до данас је добијен врло мали број једињења радона, а готово сви су флуориди или оксиди. Радон може оксидирати само неколико врло снажних оксидацијских средстава попут флуора, дајући радон дифлуорид.[16][17] То једињење се на температури изнад 250 °C поновно распада на саставне елементе.

Он има врло слабу волатилност (испарљивост) и сматра да се му формула гласи RnF
2
. Међутим због врло кратког времена полураспада радона и радиоактивности његових једињења, није могуће детаљније проучавање овог споја. Теоретске студије о овом молекулу предвиђају да би он требало да има дужину Rn-F везе од 2,08 Å, те да је то једињење термодинамички више стабилно и мање испарљиво од свог лакшег сродника XeF
2
.[18] Октаедарски молекул RnF
6
би могао да има чак и нижу енталпију формирања од дифлуорида.[19] Можда постоје и виши флуориди RnF4 и RnF6,[20] а прорачуни показују да би могли бити стабилни,[21] али постоји одређена сумња, јер до данас таква једињења нису синтетисана.[20] Верује се да се јон [RnF]+ формира у следећој реакцији:[22]

Rn (g) + 2 [O
2
]+
[SbF
6
]
(s) → [RnF]+
[Sb
2
F
11
]
(s) + 2 O
2
(g)

Радон оксиди су, поред малог броја других, неки од малобројних једињења радона;[23] доказано је постојање само његових триоксида.[20] За радон-карбонил RnCO се претпоставља да би могао бити стабилан и имати линеарну геометрију молекула.[24] Молекул Rn
2
и RnXe су доказано знатно стабилније ако се куплирају окретним моментом.[25] Атом радона угнежђен унутар молекуле фулерена предложен је као лек против тумора.[26] Иако постоји Xe(VIII), до данас нису пронађена једињења радона Rn(VIII); RnF8 би могао бити хемијски изузетно нестабилан (XeF8 је термодинамички нестабилан). Предвиђа се да би најстабилније једињење радон Rn(VIII) могло бити баријум-перрадат (Ba2RnO6), аналоган баријум-перксенату.[21] Нестабилност радона Rn(VIII) се објашњава релативистичком стабилизацијом 6s љуске, такође познатом као ефект инертних парова.[21]

Изотопи

Радон нема стабилних изотопа. Ипак, до данас је откривено и описано 36 радиоактивних изотопа, чије атомске масе имају распон од 193 до 228.[27] Најстабилнији од њих је изотоп 222Rn, који је производ распада изотопа 226Ra, а који је опет производ уранијума 238U.[28] Међу производима распада изотопа 222Rn налазе се и врло мале количине (изузетно нестабилног) изотопа 218Rn.

Постоје још три друга изотопа радона чија времена полураспада износе дуже од једног сата: 211Rn, 210Rn и 224Rn. Изотоп 220Rn је природни производ у ланцу распада најстабилнијег изотопа торијума (232Th), и у старијој литератури се понекад наводи под називом торон. Његово време полураспада износи 55,6 секунди и такође емитује алфа-зраке. Слично њему, 219Rn је деривиран из најстабилнијег изотопа актинијума (227Ac), а назван је актинон, а и он је алфа-емитер са временом полураспада од 3,96 секунди.[27] У ланцу распада изотопа нептунијума (237Np) не јављају се значајнији изотопи радона, мада се могу јавити количине у траговима (екстремно нестабилног) изотопа 217Rn.

Радон и здравље

Радон има штетан утицај на здравље људи. Штетна делатност се огледа у поремећајима ћелијске структуре ДНК због високо енергетског, краткотрајног продукта распада радона 222Rn, изазивајући развој канцерогених ћелија. Често изазива рак плућа код рудара. Многе државе имају норме које ограничавају концентрацију радона у ваздуху.

Употреба радона

Постоји неколико места у Америци и Европи, где људи седе сатима, верујући да ће их тзв. радон сауна или радонова вода-вода која садржи растворени радон, ојачати и дати им енергију. Исто важи и за топле воде у Јапану, где је вода природно богата радоном. До данас не постоји научни доказ за ово веровање, иако је временом дошло до стварања назива радонова терапија. Научници верују да радон може да се користи у медицинске сврхе, иако ова тврдња није потврђена.

Употреба радона је заснована на чињеници да већина његових изотопа представља изворе алфа честица са кратким периодом полураспада. Зато се користе при краткој и радијацији одабраних тканина.

Радон се акумулира у подземљу, рудницима и пећинама. Зато се у хидрологији, радон користи за испитивање подземних вода и одређивање њеног порекла и старости.

Референце

  1. ^ Meija, J.; et al. (2016). „Atomic weights of the elements 2013 (IUPAC Technical Report)”. Pure and Applied Chemistry. 88 (3): 265—291. doi:10.1515/pac-2015-0305. 
  2. ^ Haynes, William M., ур. (2011). CRC Handbook of Chemistry and Physics (92nd изд.). Boca Raton, FL: CRC Press. стр. 4.122. ISBN 1439855110. 
  3. ^ Parkes, G.D. & Phil, D. (1973). Melorova moderna neorganska hemija. Beograd: Naučna knjiga. 
  4. ^ Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3. изд.). Prentice Hall. ISBN 978-0-13-175553-6. 
  5. ^ Toxicological profile for radon Архивирано 2016-04-15 на сајту Wayback Machine, Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, u saradnji sa U.S. Environmental Protection Agency, decembar 1990.
  6. ^ „Public Health Fact Sheet on Radon — Health and Human Services”. Mass.Gov. Архивирано из оригинала 21. 11. 2011. г. Приступљено 4. 12. 2011. 
  7. ^ „Facts about Radon”. Facts about. Архивирано из оригинала 22. 2. 2005. г. Приступљено 7. 9. 2008. 
  8. ^ „A Citizen's Guide to Radon”. www.epa.gov. United States Environmental Protection Agency. 12. 10. 2010. Приступљено 29. 1. 2012. 
  9. ^ „Radon”. All Measures. 2004. Архивирано из оригинала 09. 08. 2011. г. Приступљено 12. 2. 2008. 
  10. ^ Williams, David R. (19. 4. 2007). „Earth Fact Sheet”. NASA. Приступљено 26. 6. 2008. 
  11. ^ „Radon”. Jefferson Lab. Приступљено 26. 6. 2008. 
  12. ^ Thomas, Jens (2002). Noble Gases. Marshall Cavendish. стр. 13. ISBN 978-0-7614-1462-9. 
  13. ^ Bader, Richard F. W. „An Introduction to the Electronic Structure of Atoms and Molecules”. McMaster University. Приступљено 26. 6. 2008. 
  14. ^ David R. Lide (2003). „Section 10, Atomic, Molecular, and Optical Physics; Ionization Potentials of Atoms and Atomic Ions”. CRC Handbook of Chemistry and Physics (84. изд.). Boca Raton, Florida: CRC Press. 
  15. ^ Avrorin, V V; Krasikova, R N et.al. (1982). „The Chemistry of Radon”. Russian Chemical Reviews. 51: 12. Bibcode:1982RuCRv..51...12A. doi:10.1070/RC1982v051n01ABEH002787. 
  16. ^ Stein, L. (1970). „Ionic Radon Solution”. Science. 168 (3929): 362—4. Bibcode:1970Sci...168..362S. PMID 17809133. doi:10.1126/science.168.3929.362. 
  17. ^ Pitzer, Kenneth S. (1975). „Fluorides of radon and element 118”. J. Chem. Soc., Chem. Commun. (18): 760—1. doi:10.1039/C3975000760b. 
  18. ^ Meng- Sheng Liao; Qian- Er Zhang (1998). „Chemical Bonding in XeF2, XeF4, KrF2, KrF4, RnF2, XeCl2, and XeBr2: From the Gas Phase to the Solid State”. The Journal of Physical Chemistry A. 102 (52): 10647. doi:10.1021/jp9825516. 
  19. ^ Filatov, Michael; Cremer, Dieter (2003). „Bonding in radon hexafluoride: An unusual relativistic problem?”. Physical Chemistry Chemical Physics. 5 (6): 1103. Bibcode:2003PCCP....5.1103F. doi:10.1039/b212460m. 
  20. ^ а б в Sykes, A. G. (1998). „Recent Advances in Noble-Gas Chemistry”. Advances in Inorganic Chemistry. 46. Academic Press. стр. 91—93. ISBN 978-0120236466. Приступљено 2012-11-02. 
  21. ^ а б в Thayer, John S. (2010). „Relativistic Effects and the Chemistry of the Heavier Main Group Elements”: 80. doi:10.1007/978-1-4020-9975-5_2. 
  22. ^ Holloway, J (1986). „Noble-gas fluorides”. Journal of Fluorine Chemistry. 33: 149. doi:10.1016/S0022-1139(00)85275-6. 
  23. ^ Avrorin, V. V.; Krasikova, R. N. et.al. (1982). „The Chemistry of Radon”. Russ. Chem. Review. 51: 12. Bibcode:1982RuCRv..51...12A. doi:10.1070/RC1982v051n01ABEH002787. 
  24. ^ Malli, Gulzari L. (2002). „Prediction of the existence of radon carbonyl: RnCO”. International Journal of Quantum Chemistry. 90 (2): 611. doi:10.1002/qua.963. 
  25. ^ Runeberg, Nino; Pyykkö, Pekka (1998). „Relativistic pseudopotential calculations on Xe2, RnXe, and Rn2: The van der Waals properties of radon”. International Journal of Quantum Chemistry. 66 (2): 131. doi:10.1002/(SICI)1097-461X(1998)66:2<131::AID-QUA4>3.0.CO;2-W. 
  26. ^ Browne, Malcolm W. (5. 3. 1993). „Chemists Find Way to Make An 'Impossible' Compound”. The New York Times. Приступљено 30. 1. 2009. 
  27. ^ а б Sonzogni, Alejandro. „Interactive Chart of Nuclides”. National Nuclear Data Center: Brookhaven National Laboratory. Архивирано из оригинала 10. 10. 2018. г. Приступљено 6. 6. 2008. 

Спољашње везе

Read other articles:

LukisankuAlbum studio karya Billy SimpsonDirilis2013GenrepopLabelUniversal Music IndonesiaKronologi Billy Simpson -String Module Error: Match not foundString Module Error: Match not found Lukisanku (2013) Christmas with Billy Simpson (2014)String Module Error: Match not foundString Module Error: Match not found Lukisanku merupakan sebuah album musik perdana karya juara pertama The Voice Indonesia Musim Pertama, Billy Simpson. Album ini dirilis pada tahun 2013, beberapa bulan berselang set...

 

The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: B'z Live-Gym 2010 Ain't No Magic at Tokyo Dome – news · newspapers · books · s...

 

Group of states in the Central North-western part of the US This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: West North Central states – news · newspapers · books · scholar · JSTOR (April 2020) PlaceWest North CentralTop, left to right: Minneapolis, St. Paul, St. Louis, and Kansas CityCompositionIow...

Mercusuar di Fårö Mercusuar di ujung dunia di Ushuaia, Argentina Mercusuar, menara api, menara suar, atau menara angin adalah sebuah bangunan menara dengan sumber cahaya di puncaknya untuk membantu navigasi kapal laut. Sumber cahaya yang digunakan beragam mulai dari lampu sampai lensa dan (pada zaman dahulu) api. Karena saat ini navigasi kapal laut telah berkembang pesat dengan bantuan GPS, jumlah mercusuar di dunia telah merosot menjadi kurang dari 1.500 buah. Mercusuar biasanya digunakan ...

 

Pietro Ceccaroni Nazionalità  Italia Altezza 187 cm Peso 73 kg Calcio Ruolo Difensore Squadra  Palermo Carriera Giovanili  Spezia Squadre di club1 2013-2015 Spezia1 (0)2015-2016→  SPAL22 (0)2016-2018 Spezia29 (0)[1]2018-2019→  Padova16 (0)2019-2023 Venezia122 (7)[2]2023→  Lecce2 (0)2023- Palermo27 (2) Nazionale 2013-2014 Italia U-194 (0)2014-2016 Italia U-205 (0) 1 I due numeri indicano le presenze e le reti segnate, pe...

 

This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic. Please help improve it by rewriting it in an encyclopedic style. (June 2009) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and remo...

Javi Martínez Martínez di DenmarkInformasi pribadiNama lengkap Javier Martínez AginagaTanggal lahir 2 September 1988 (umur 35)Tempat lahir Estella, SpanyolTinggi 189 cm (6 ft 2+1⁄2 in)Posisi bermain GelandangInformasi klubKlub saat ini Qatar SCNomor 8Karier junior1993–1995 Berceo1995–1997 Logroñés CD Arenas2000 Izarra2001–2005 OsasunaKarier senior*Tahun Tim Tampil (Gol)2005–2006 Osasuna B 32 (3)2006–2012 Athletic Bilbao 201 (22)2012–2021 FC Bayern M...

 

Aeroporto militare di MitigaaeroportoMig 23 a Mitiga nel 2009 Codice IATAMJI Codice ICAOHLLM Nome commercialeex Aeroporto Internazionale di Mitiga DescrizioneTipomilitare e civile Stato Libia RegioneDistretto di Tripoli CittàMellaha Posizione5 km ad est di Tripoli HubLibyan Airlines Afriqiyah Airways Medavia Costruzione1995 (come civile) Altitudine11 m s.l.m. Coordinate32°53′40″N 13°16′40″E / 32.894445°N 13.277778°E32.894445; 13.277778Coordinate: 32...

 

Gwalior State political office Gwalior ResidencyAgency of British India1782–1947Map of Central India in 1909 with the Gwalior Residency in its northern and western sectorsArea • 190146,167 km2 (17,825 sq mi)Population • 1901 2,187,612 History • Treaty of Salbai 1782• Gwalior separated from Central India Agency 1921• Rampur and Benaras transferred to Gwalior Residency 1936• Independence of India 1947 Preceded by Succeede...

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

Sparkassen Cup 2003 Sport Tennis Data 22 settembre – 28 settembre Edizione 13a Superficie Sintetico indoor Campioni Singolare Anastasija Myskina Doppio Martina Navrátilová / Svetlana Kuznecova 2002 Lo Sparkassen Cup 2003 è stato un torneo femminile di tennis giocato sul sintetico indoor. È stata la 13ª edizione del torneo, che fa parte della categoria Tier II nell'ambito del WTA Tour 2003. Si è giocato a Lipsia in Germania, dal 22 al 28 settembre 2003. Indice 1 Campionesse 1.1 Singol...

 

A mortar carrier, or self-propelled mortar, is a self-propelled artillery piece in which a mortar is the primary weapon. This list is incomplete; you can help by adding missing items. (April 2011) Summary List Modern Era Mortar Systems Mortar carrier 81 mm Weapon name Caliber[mm] Country of origin Source ALKAR (Aselsan) 81 mm  Turkey [1] Carrier Mortar Tracked (CMT) 81 mm  India [2] Cardom 81 81 mm  Israel [3] Dual EIMOS 81 mm  ...

Natural number ← 97 98 99 → ← 90 91 92 93 94 95 96 97 98 99 → List of numbersIntegers← 0 10 20 30 40 50 60 70 80 90 →Cardinalninety-eightOrdinal98th(ninety-eighth)Factorization2 × 72Divisors1, 2, 7, 14, 49, 98Greek numeralϞΗ´Roman numeralXCVIIIBinary11000102Ternary101223Senary2426Octal1428Duodecimal8212Hexadecimal6216 98 (ninety-eight) is the natural number following 97 and preceding 99. In mathematics 98 is: Wedderburn–Etherington number[1] nontotient number...

 

Japanese cattle ranch Ito RanchSky view of Ito Ranch in 2023.CountryJapanCoordinates34°39′50″N 136°25′21″E / 34.6638°N 136.4224°E / 34.6638; 136.4224Established1953OwnerHiroki ItoWebsiteOfficial website Ito Ranch (伊藤牧場) is a Matsusaka beef farm located near the city of Tsu, Mie Prefecture, Japan, dedicated to raising kuroge wagyū or Japanese Black beef. Founded in 1953, as of 2024[update] it is owned by Hiroki Ito (伊藤浩基), and is cla...

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (October 2021) (Learn how and when to remove this message) Ship-based CIWS/Missile launcher Pantsir-M Model of a corvette of project 22800 at the «Army 2016»TypeShip-based CIWS/Missile launcherPlace of originRussian FederationService historyIn service2018–presentUsed byRussian FederationWa...

Election in Texas Main article: 1944 United States presidential election 1944 United States presidential election in Texas ← 1940 November 7, 1944 1948 →   Nominee Franklin D. Roosevelt Thomas E. Dewey Unpledged electors Party Democratic Republican Texas Regulars Home state New York New York Texas Running mate Harry S. Truman John W. Bricker — Electoral vote 23 0 0 Popular vote 821,605 191,425 135,439 Percentage 71.42% 16.64% 11.77% County ...

 

Gaya atau nada penulisan artikel ini tidak mengikuti gaya dan nada penulisan ensiklopedis yang diberlakukan di Wikipedia. Bantulah memperbaikinya berdasarkan panduan penulisan artikel. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Christmas Lights beralih ke halaman ini. Untuk acara ITV tahun 2004, lihat Christmas Lights (spesial televisi). Christmas LightsSingel oleh ColdplayDirilis1 Desember 2010FormatUnduhan digitalGenreRock alternatifDurasi4:02LabelCapitol, Parlophon...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 最強ロボ ダイオージャ – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2018年5月) 最強ロボ ダイオージャ ジャンル ...

この名前は、スペイン語圏の人名慣習に従っています。第一姓(父方の姓)はガルシア、第二姓(母方の姓)はデ・ラ・フエンテです。 セルヒオ・ガルシア エスパニョールでのガルシア (2012年)名前本名 セルヒオ・ガルシア・デ・ラ・フエンテSergio García de la Fuenteラテン文字 SERGIO GARCIA基本情報国籍 スペイン生年月日 (1983-06-09) 1983年6月9日(41歳)出身地 バルセロナ身�...

 

NTTドコモ N-04B キャリア NTTドコモ 製造 NECカシオ モバイルコミュニケーションズ 発売日 2010年5月27日 概要 OS Access Linux Platform + OPP(L) CPU OMAP 3430 音声通信方式 3G:FOMA(W-CDMA)2G:GSM無線LAN(IEEE 802.11)(3G:800MHz、850MHz、1.7GHz、2GHz) (2G:900MHz、1800Mhz、1900MHz) データ通信方式 3G:FOMA(HSDPA・HSUPA)2G:GSM無線LAN(IEEE 802.11b/g) 形状 折りたたみ・回転二軸式 サイズ 113 × 50 &#...