У математици, Парсевалова теорема [1] обично се односи на резултат да је Фуријеова трансформација унитарна ; односно, да је сума (или интеграл) квадрата функције једнака збиру (или интегралу) квадрата његове трансформације. Она потиче из теореме из 1799. године о серијама Марка-Антоана Парсевала, која је касније примењена на Фуријеов ред . Позната је и као Рајлехова енергетска теорема, или Рајлехов идентитет, након Џона Вилијама Страта, лорда Рајлеха. [2]
Иако се термин „Парсевалова теорема“ често користи за описивање унитарности било које Фуријеове трансформације, посебно у физици, најчешћи облик овог својства се правилније назива Планшерелова теорема . [3]
Доказ Парсевалове теореме
Претпоставимо да су и две квадратне интеграбилне (у погледу Лебегове мере), функције сложене вредности на периоде са Фуријеовим редом
и
респективно. Онда
-
|
|
(Eq.1)
|
|
где је имагинарна јединица, а хоризонталне цртице означавају сложену конјугацију .
Више уопштено, дата као абелова локална компактна група G са дуалношћу по Понтрагјину G^, Парсевалова теорема каже да Понтрагјин-Фуријеова трансформација јесте унитарни оператер између Хилбертових простора L2 (G) и L2 (G^) (с интеграција је против одговарајуће умањене Харове мере на две групе.) Када је G јединични круг Т, G^ су цели бројеви и то је случај који је горе разматран. Када је G права линија , G^ је такође а унитарна трансформација је Фуријеова трансформација на стварној линији. Када је G циклична група Zn, поново је самодуална, а Понтрагјин-Фоуријева трансформација је оно што се у примењеним контекстима назива дискретном Фуријевом трансформацијом .
Парсевалова теорема се такође може изразити на следећи начин: Претпоставимо да је квадратна интеграбилна функција (тј. и су интегрисани на том интервалу), са Фуријеовим редом
Тада [4] [5] [6]
Нотација коришћена у физици
У физици и инжењерству, Парсевалова теорема се често пише као:
где представља континуирану Фуријеову трансформацију (у нормализованом, унитарном облику) од , а је фреквенција у радијанима у секунди.
Тумачење овог облика теореме је да се укупна енергија сигнала може израчунати сабирањем снаге по узорку током времена или спектралне снаге по фреквенцији.
За дискретне временске сигнале, теорема постаје:
где јесте дискретна Фуријеова трансформација (ДТФТ) од и представља угаону фреквенцију (у радијанима по узорку) од .
Алтернативно, за дискретну Фуријеову трансформацију (ДФТ), однос постаје:
где јесте ДФТ од , обе дужине .
Види још
Парсевалова теорема уско је повезана са осталим математичким резултатима који укључују унитарне трансформације:
Напомене
- ^ Parseval des Chênes, Marc-Antoine Mémoire sur les séries et sur l'intégration complète d'une équation aux différences partielles linéaire du second ordre, à coefficients constants" presented before the Académie des Sciences (Paris) on 5 April 1799. This article was published in Mémoires présentés à l’Institut des Sciences, Lettres et Arts, par divers savants, et lus dans ses assemblées. Sciences, mathématiques et physiques. (Savants étrangers.), vol. 1, pages 638–648 (1806).
- ^ Rayleigh, J.W.S. (1889) "On the character of the complete radiation at a given temperature," Philosophical Magazine, vol. 27, pages 460–469. Available on-line here.
- ^ Plancherel, Michel (1910) "Contribution à l'etude de la representation d'une fonction arbitraire par les integrales définies," Rendiconti del Circolo Matematico di Palermo, vol. 30, pages 298–335.
- ^ Arthur E. Danese (1965). Advanced Calculus. 1. Boston, MA: Allyn and Bacon, Inc. стр. 439.
- ^ Wilfred Kaplan (1991). Advanced Calculus (4th изд.). Reading, MA: Addison Wesley. стр. 519. ISBN 0-201-57888-3.
- ^ Georgi P. Tolstov (1962). Fourier Series. Превод: Silverman, Richard. Englewood Cliffs, NJ: Prentice-Hall, Inc. стр. 119.
Референце
- Парсевал, МацТутор архива историје математике .
- Георге Б. Арфкен и Ханс Ј. Вебер, Математичке методе за физичаре (Харцоурт: Сан Диего, 2001).
- Хуберт Кеннеди, Осам математичких биографија (Перемптори Публицатионс: Сан Францисцо, 2002).
- Алан В. Оппенхеим и Роналд В. Сцхафер, 2. издање дискретне обраде сигнала (Прентице Халл: Уппер Саддле Ривер, Њ, 1999) стр. 60.
- Виллиам МцЦ. Сиеберт, Цирцуитс, Сигналс, анд Системс (МИТ Пресс: Цамбридге, МА, 1986), стр. 410–411.
- Давид В. Каммлер, Први курс у Фоуриеровој анализи (Прентице-Халл, Инц., Река Горње седло, Њ, 2000) стр. 74.
Спољашње везе