Skopin (organsko jedinjenje)
|
Read other articles:
Pemeriksaan denyut pada pembuluh nadi. Dalam kedokteran, denyut nadi mewakili pemeriksaan pembuluh nadi dengan ditekan menggunakan ujung jari. Denyut nadi dapat diperiksa di tempat pembuluh nadi berdekatan dengan tulang, seperti leher, di bawah siku, di dekat pergelangan tangan, paha, dan kaki. Denyut nadi (atau detak pembunuh nadi per menit) setara dengan ukuran denyut jantung. Denyut jantung juga diukur dengan memeriksa detak jantung secara langsung, yang biasanya menggunakan stetoskop dan...
BouneschluppJenisSupTempat asalLuksemburgBahan utamabuncis, kentang, daging bakon, bawang bombaiSunting kotak info • L • BBantuan penggunaan templat ini Media: BouneschluppBouneschlupp adalah sup tradisional Luksemburg berbahan dasar kentang, bakon, dan bawang .[1][2] Walaupun dianggap sebagai hidangan nasional Luksemburg, sup ini dapat pula ditemukan di Saarland (Jerman), Arelerland (Belgia), dan Lorraine (Prancis). Lihat juga Sup Masakan Luksemburg Re...
Theotokos dari Kazan, ikonografi tahun 1649. Bagian dari seri tentangGereja Ortodoks TimurMosaik Kristos Pantokrator, Hagia Sofia Ikhtisar Struktur Teologi (Sejarah teologi) Liturgi Sejarah Gereja Misteri Suci Pandangan tentang keselamatan Pandangan tentang Maria Pandangan tentang ikon Latar belakang Penyaliban / Kebangkitan / KenaikanYesus Agama Kristen Gereja Kristen Suksesi apostolik Empat Ciri Gereja Ortodoksi Organisasi Otokefali Kebatrikan Batrik Ekumenis Tatanan keuskupan Kle...
Research library of the University of Oxford Not to be confused with the Bodleian Libraries, the library group of which the Bodleian is a member. Bodleian LibraryDoors to the Bodleian's main entrance, with the coats of arms of several Oxford colleges51°45′14″N 1°15′16″W / 51.75389°N 1.25444°W / 51.75389; -1.25444LocationBroad Street, Oxford, United KingdomTypeAcademic libraryEstablished1602; 422 years ago (1602)CollectionItems collectedBoo...
BOINC based volunteer computing project researching asteroid orbits orbit@homePlatformBOINC orbit@home[1] was a BOINC-based volunteer computing project of the Planetary Science Institute. It uses the Orbit Reconstruction, Simulation and Analysis[2] framework to optimize the search strategies that are used to find near-Earth objects. On March 4, 2008, orbit@home completed the installation of its new server and officially opened to new members. On April 11, orbit@home launched a...
العلاقات البريطانية الفيجية المملكة المتحدة فيجي المملكة المتحدة فيجي تعديل مصدري - تعديل العلاقات البريطانية الفيجية هي العلاقات الثنائية التي تجمع بين المملكة المتحدة وفيجي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للد...
Chemical compound AVN-211Clinical dataOther namesCD-008-0173Identifiers IUPAC name 5,7-dimethyl-2-(methylsulfanyl)-3-(phenylsulfonyl)pyrazolo[1,5-a]pyrimidine CAS Number1173103-84-8ChemSpider26387125ChEMBLChEMBL1668500Chemical and physical dataFormulaC15H15N3O2S2Molar mass333.42 g·mol−13D model (JSmol)Interactive image SMILES Cc1cc(n2c(n1)c(c(n2)SC)S(=O)(=O)c3ccccc3)C InChI InChI=1S/C15H15N3O2S2/c1-10-9-11(2)18-14(16-10)13(15(17-18)21-3)22(19,20)12-7-5-4-6-8-12/h4-9H,1-3H3Key:KSAUCBGU...
Historic siteThe Drum, EdinburghEntrance front of The DrumCoordinates55°54′30″N 3°07′12″W / 55.9084°N 3.1201°W / 55.9084; -3.1201Built1726–1734Built forJohn Somerville, 13th Lord SomervilleArchitectWilliam Adam Listed Building – Category ADesignated14 July 1966Reference no.LB28052 Inventory of Gardens and Designed Landscapes in ScotlandDesignated1 July 1987Reference no.GDL00356 Location in Edinburgh council area The Drum, driveway The Drum is...
Medan PoloniaKecamatanPangkalan Udara Soewondo, sebelumnya Bandara PoloniaPeta lokasi Kecamatan Medan PoloniaMedan PoloniaPeta lokasi Kecamatan Medan PoloniaKoordinat: 3°35′57″N 98°41′51″E / 3.599276°N 98.697525°E / 3.599276; 98.697525Koordinat: 3°35′57″N 98°41′51″E / 3.599276°N 98.697525°E / 3.599276; 98.697525Negara IndonesiaProvinsiSumatera UtaraKotaMedanPemerintahan • CamatAmran RambePopulasi (20...
Electronic device used to capture a digital image of the fingerprint pattern A stand-alone fingerprint scanner, such as one used at the entrance to a building Fingerprint scanners are security systems of biometrics. They are used in police stations,[1] security industries, smartphones,[2] and other mobile devices.[3][4] Fingerprints People have patterns of friction ridges on their fingers, these patterns are called the fingerprints. Fingerprints are uniquely de...
Ini adalah nama Papua, Dani, marganya adalah Haluk Dr.Ribka HalukS.Sos., M.M. Penjabat Gubernur Papua TengahPetahanaMulai menjabat 11 November 2022PresidenJoko WidodoPendahulujabatan baruPenggantiPetahana Informasi pribadiLahir10 Januari 1971 (umur 53)Piramid, Jayawijaya, Irian Jaya, IndonesiaKebangsaanIndonesiaPartai politikIndependenSuami/istriNikolaus RumpomboAnakNerrens Mardan Florentino RumpomboPendidikanMagister ManajemenDoktor Ilmu ManajemenAlma materUniversitas CenderawasihUn...
У этого термина существуют и другие значения, см. Решетиха (значения). Посёлок городского типаРешетиха 56°13′08″ с. ш. 43°17′37″ в. д.HGЯO Страна Россия Субъект Федерации Нижегородская область Муниципальный район Володарский Городское поселение рабочий посёлок �...
American politician Isaac RoopProvisional Governor of the Proposed Territory of NevadaIn officeDecember 15, 1859 – March 2, 1861Preceded byNoneSucceeded byJames W. Nye (as Territorial Governor) Personal detailsBorn(1822-03-13)March 13, 1822Carroll County, Maryland, U.S.DiedFebruary 14, 1869(1869-02-14) (aged 46)Susanville, California, U.S.Resting placeSusanville CemeteryPolitical partyWhigSpouseNancy (nee Gardner) RoopChildren3RelativesSusan RoopOccupationFarmer, trader, polit...
ヤブイヌ ヤブイヌ Speothos venaticus 保全状況評価[1][2][3] NEAR THREATENED(IUCN Red List Ver.3.1 (2001))ワシントン条約附属書I 分類 ドメイン : 真核生物 Eukaryota 界 : 動物界 Animalia 門 : 脊索動物門 Chordata 亜門 : 脊椎動物亜門 Vertebrata 綱 : 哺乳綱 Mammalia 目 : 食肉目 Carnivora 科 : イヌ科 Canidae 属 : ヤブイヌ属Speothos Lund, 1839[4] 種 : ヤブイヌ S. venaticus 学名 Speothos venatic...
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Shooting at the 2022 Asian Games – Men's trap team – news · newspapers · books · scholar · JSTOR (November 2023) Men's trap team at the 2022 Asian GamesVenueFuyang Yinhu Sports CentreDates30 September–1 October 2023Competitors30 from...
German researcher Niklas HöhneNiklas HöhneBorn(1970-10-00)October 1970Hamburg, GermanyNationalityGermanAlma materRWTH Aachen UniversityINSA Lyon University of UtrechtKnown forClimate policyScientific careerFieldsClimate change mitigationInstitutionsUNFCCCNewClimate InstituteWageningen UniversityDoctoral advisorKornelis Blok Niklas Höhne (born October 1970) is a German scientist in the field of national and international climate policy and mitigation of greenhouse gas emissions. H...
Emily RatajkowskiEmily Ratajkowski apparaissant dans une vidéo pour Vogue en 2023.BiographieNaissance 7 juin 1991 (33 ans)WestminsterNom de naissance Emily O'Hara RatajkowskiNationalité américaineFormation Université de Californie à Los AngelesSan Dieguito Academy (en)Activités Actrice, mannequinPériode d'activité depuis 2004Autres informationsA travaillé pour Ford ModelsTaille 1,7 mPoids 52 kgCheveux Cheveux châtainsYeux Marron foncé (d)Représentée par Ford ModelsSite web (...
Aire d'attraction de Roussillon Localisation de l'aire d'attraction de Roussillon dans le département de l'Isère. Géographie Pays France Région Auvergne-Rhône-Alpes Départements Drôme - Loire Caractéristiques Type Aire d'attraction d'une ville Code Insee 147 Catégorie Aires de 50 000 à moins de 200 000 habitants Nombre de communes 27 soit 14 (Isère) + 6 (Ardèche) + 6 (Drôme) + 1 (Loire)) Population 63 714 hab. (2021) modifier L'aire d'attraction de...
本條目介紹的是日本德川時代的幕府將軍。關於同名的釋迦牟尼佛重要弟子,請見慶喜(印度)。 公爵德川慶喜征夷大将軍在任時的徳川慶喜 日本第15代大君任期1867年1月10日—1868年1月3日前任德川家茂继任称号廢除江戶幕府第15代征夷大將軍任期1867年1月10日—1868年1月3日前任德川家茂继任職位廢除帝国议会貴族院議員任期1902年6月3日—1910年12月8日 个人资料出�...
Disproved conjecture in number theory Summatory Liouville function L(n) up to n = 107. The (disproved) conjecture states that this function is always negative. The readily visible oscillations are due to the first non-trivial zero of the Riemann zeta function. Closeup of the summatory Liouville function L(n) in the region where the Pólya conjecture fails to hold. Logarithmic graph of the negative of the summatory Liouville function L(n) up to n = 2 × 109. The g...