U matematici, hipoteza je zaključak ili predlog za koji se pretpostavlja da je istinit zbog preliminarnih pratećih dokaza, ali za koji još nije pronađen dokaz ili opovrgnuće.[1][2][3][4] Neke konjekture, kao što je Rimanova hipoteza (još uvek pretpostavka) ili poslednja Fermaova teorema (pretpostavka koju je Endru Vajls dokazao 1995. godine), oblikovali su veći deo matematičke istorije, jer su razvijena nova područja matematike kako bi se dokazale.[5]
Borwein, Peter; Choi, Stephen; Rooney, Brendan; Weirathmueller, Andrea, ур. (2008), The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, New York: Springer, ISBN978-0-387-72125-5, doi:10.1007/978-0-387-72126-2
Cartier, P. (1982), „Comment l'hypothèse de Riemann ne fut pas prouvée”, Seminar on Number Theory, Paris 1980–81 (Paris, 1980/1981), Progr. Math., 22, Boston, MA: Birkhäuser Boston, стр. 35—48, MR693308
Ford, Kevin (2002), „Vinogradov's integral and bounds for the Riemann zeta function”, Proceedings of the London Mathematical Society, Third Series, 85 (3): 565—633, MR1936814, doi:10.1112/S0024611502013655
Franel, J.; Landau, E. (1924), „Les suites de Farey et le problème des nombres premiers" (Franel, 198–201); "Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel (Landau, 202–206)”, Göttinger Nachrichten: 198—206
Ghosh, Amit (1983), „On the Riemann zeta function—mean value theorems and the distribution of |S(T)|”, J. Number Theory, 17: 93—102, doi:10.1016/0022-314X(83)90010-0
Hadamard, Jacques (1896), „Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques”, Bulletin de la Société Mathématique de France, 14: 199—220, doi:10.24033/bsmf.545 Reprinted in Borwein et al. 2008.
Ingham, A.E. (1932), The Distribution of Prime Numbers, Cambridge Tracts in Mathematics and Mathematical Physics, 30, Cambridge University Press. Reprinted 1990, ISBN978-0-521-39789-6, MR1074573
Ivić, Aleksandar (2008), „On some reasons for doubting the Riemann hypothesis”, Ур.: Borwein, Peter; Choi, Stephen; Rooney, Brendan; Weirathmueller, Andrea, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, New York: Springer, стр. 131—160, ISBN978-0-387-72125-5, arXiv:math.NT/0311162
Karatsuba, A. A. (1984a), „Zeros of the function ζ(s) on short intervals of the critical line”, Izv. Akad. Nauk SSSR, Ser. Mat. (на језику: руски), 48 (3): 569—584, MR0747251
Karatsuba, A. A. (1984b), „Distribution of zeros of the function ζ(1/2 + it)”, Izv. Akad. Nauk SSSR, Ser. Mat. (на језику: руски), 48 (6): 1214—1224, MR0772113
Karatsuba, A. A. (1985), „Zeros of the Riemann zeta-function on the critical line”, Trudy Mat. Inst. Steklov. (на језику: руски) (167): 167—178, MR0804073
Knauf, Andreas (1999), „Number theory, dynamical systems and statistical mechanics”, Reviews in Mathematical Physics. A Journal for Both Review and Original Research Papers in the Field of Mathematical Physics, 11 (8): 1027—1060, Bibcode:1999RvMaP..11.1027K, MR1714352, doi:10.1142/S0129055X99000325
Montgomery, Hugh L. (1973), „The pair correlation of zeros of the zeta function”, Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, стр. 181—193, MR0337821 Reprinted in Borwein et al. 2008.
Montgomery, Hugh L.; Vaughan, Robert C. (2007), Multiplicative Number Theory I. Classical Theory, Cambridge studies in advanced mathematics, 97, Cambridge University Press.ISBN978-0-521-84903-6
Nyman, Bertil (1950), On the One-Dimensional Translation Group and Semi-Group in Certain Function Spaces, PhD Thesis, University of Uppsala: University of Uppsala, MR0036444