rastvorljivi plazma fibronektin (ranije poznat kao hladno-nerastvorljivi globulin, ili Clg) je jedna od glavnih proteinskih komponenti krvne plazme (300 μg/ml). On se još proizvodi u jetri i u hepatocitima.
nerastvorljivi ćelijski fibronektin je značajna komponenta ekstracelularnog matriksa. Ona se izlučuje is različitih ćelija, a primarno iz fibroblasta, kao rastvorljivi dimer, i potom se sakuplja kao nerastvorni ekstracelularni matriks u kompleksnom ćelijski-posredovanim procesu.
Fibronektin postoji kao dimer, koji se sastoji od dva skoro identična monomera povezanih parom disulfidnih veza.[1][4] Svaki fibronektinski monomer ima molekulsku težinu od 230-250 kDa, i sadrži tri tipa proteinskih modula: tip I, II, i III. Sva tri modula se sastoje of dve antiparalelne β-ploče; međutim, tip I i tip II su stabilizovani intra-lančanim disulfidnim mostovima, dok tip III modul ne sadrži disulfidne mostove. Odsustvo disulfidnih intra-lanaca u tipu III modulima dozvoljava im da se delimično razviju pod uticajem sile.[5]
Tri regiona promenljivog RNK sjedinjavanja se javljaju duž fibronektin monomera.[4] Jedan ili oba "ekstra" tipa III modula (EIIIA i EIIIB) mogu biti prisutna u ćelijskom fibronektinu, ali oni nisu nikad prisutni u fibronektinu iz krvne plazme. Promenljivi V-region postoji između III14-15 (14tog i 15tog tipa III modula). V-region strukture je različit of tipa I, II, i III modula, a njegovo prisustvo i dužina mogu varirati. V-region sadrži vezujuće mesto za α4β1integrine. Ono je prisutno u većini ćelijskih fibronektina, ali samo jedna of dve pod-jedinice fibronektin dimera plazme sadrži V-region sekvencu.
Moduli su aranžirani u nekoliko funkcionalnih i protein-vezujućih domena duž fibronektin monomera. Postoje četiri fibronektin-vezujuća domena, što dozvoljava fibronektinu da se asocira sa drugim fibronektin molekulima.[4] Jedan of tih fibronektin-vezujućih domena, I1-5, se naziva "saborni domen", i on je neophodan za inicijaciju fibronektin matriks konstrukcije. Moduli III9-10 su "ćelijski vezujući domeni" fibronektina. RGD sekvenca (Arg-Gly-Asp) je locirana III10 i one je mesto ćelijskog pripajanja putem αVβ1 i αVβ3 integrina na ćelijskoj površini. "Mesto sjedinjavanja" je na III9 i ima ulogu u modulaciji fibronektinove asocijacije sa αVβ1 integrinima.[6] Fibronektin isto sadrži domene za fibrin-vezivanje (I1-5, I10-12), kolagen-vezivanje (I6-9), fibulin-1-vezivanje (III13-14), i sindekan-vezivanje (III12-14).[4]
Modularna struktura fibronektina i njegovih vezujućih domena
Fibronektin igra presudnu ulogu u lečenju rana.[7] Zajedno sa fibrinom, plazma fibronektin se deponuje na mestu povrede, formirajući krvnu grudvu koja zaustavlja krvarenje i zaštićuje potporno tkivo. Dok se popravka tkiva nastavlja, fibroblasti i makrofage počinju da preuređuju površinu, degradirajući proteine koji formiraju privremeni matriks krvne grudve i zamenjujući ih sa matriksom koji više podseća normalnom okružujećem tkivu. Fibroblasti izlučuju proteaze, uključujući matriks metaloproteaze, koje svaruju fibronektin is plazme, i potom fibroblasti izlučuju ćelijski fibronektin i sklapaju ga u nerastvornimatriks. Fragmentacija fibronektina proteazama je bila predložena da promoviše kontrakciju rane, što je kritičan korak u zarastanju rane. Fragmentacija fibronektina isto tako izlaže njegov V-region, koji sadrži mesto za vezivanje α4β1integrina. Ti fragmenti fibronektina se veruje da uvećavaju vezivanje ćelija koje izražavaju α4β1 integrin, što im dozvoljava da se priljube i kontraktuju okružujući matriks.
Ćelijski fibronektin formira nerastvorni fibrilarnimatriks u kompleksnom ćelijski-posedovanom procesu.[10] Formiranje fibronektin matriksa počinje kad se rastvorljivi, kompaktni fibronektin dimeri izluče is ćelija, obično fibroblasta. Ti rastvorljivi dimeri se vežu za α5β1integrin receptore na ćelijskoj površini i pomažu u grupisanju integrina. Lokalna koncentracija integrin-vezanog fibronektina se povećava, dozvoljavajući vezanim fibronektin molekulima da lakše uzajamno deluju. U daljem progresu formiranja fibronektina, rastvorljivi filamenti se pretvaraju u veće nerastvorne filamente koji sačinjavaju ekstra ćelijski matriks.
Promena fibronektina od rastvorne u nerastvorne filamente se odvija kad su prikrivena fibronektin-vezujuća mesta izložena duž vezanih fibronektin molekula. Veruje se da ćelije rastežu fibronektin povlačenjem njihovih fibronektin-vezanih integrin receptorima. Ta sila delimično razvija fibronektin ligand, otkrivajući skrivena fibronektin-vezujuća mesta i dozvoljavajući obližnjim fibronektin molekulima da se vežu. Ta fibronektin-fibronektin interakcija omogućava rastvorljivom, ćelijski-asociranim filamentima da se granaju i stabilizuju u nerastvorni fibronektin matriks.
^ абвгMao Y, Schwarzbauer JE (2005). „Fibronectin fibrillogenesis, a cell-mediated matrix assembly process”. Matrix biology : journal of the International Society for Matrix Biology. 24 (6): 389—99. PMID16061370. doi:10.1016/j.matbio.2005.06.008.
^Erickson, H. P. (2002). „Stretching fibronectin”. Journal of muscle research and cell motility. 23 (5-6): 575—80. PMID12785106. doi:10.1023/A:1023427026818.
^Wierzbicka-Patynowski I, Schwarzbauer JE (2003). „The ins and outs of fibronectin matrix assembly”. Journal of cell science. 116 (Pt 16): 3269—76. PMID12857786. doi:10.1242/jcs.00670.
^Han S, Khuri FR, Roman J (2006). „Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways”. Cancer research. 66 (1): 315—23. PMID16397245. doi:10.1158/0008-5472.CAN-05-2367.
^Chen M, Marinkovich MP, Veis A, Cai X, Rao CN, O'Toole EA, Woodley DT (1997). „Interactions of the amino-terminal noncollagenous (NC1) domain of type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin”. J. Biol. Chem. UNITED STATES. 272 (23): 14516—22. ISSN0021-9258. PMID9169408. doi:10.1074/jbc.272.23.14516.
^Chung, C Y; Zardi, L.; Erickson H P (1995). „Binding of tenascin-C to soluble fibronectin and matrix fibrils”. J. Biol. Chem. UNITED STATES. 270 (48): 29012—7. ISSN0021-9258. PMID7499434. doi:10.1074/jbc.270.48.29012.
^Martin, J A; Miller B A; et al. (2002). „Co-localization of insulin-like growth factor binding protein 3 and fibronectin in human articular cartilage”. Osteoarthr. Cartil. England. 10 (7): 556—63. ISSN1063-4584. PMID12127836. doi:10.1053/joca.2002.0791.
^Gui, Y; Murphy L J (2001). „Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) binds to fibronectin (FN): demonstration of IGF-I/IGFBP-3/fn ternary complexes in human plasma”. J. Clin. Endocrinol. Metab. United States. 86 (5): 2104—10. ISSN0021-972X. PMID11344214. doi:10.1210/jc.86.5.2104.
Literatura
Dodatni izvori
ffrench-Constant C (1996). „Alternative splicing of fibronectin--many different proteins but few different functions.”. Exp. Cell Res. 221 (2): 261—71. PMID7493623. doi:10.1006/excr.1995.1374.
Snásel J, Pichová I (1997). „The cleavage of host cell proteins by HIV-1 protease.”. Folia Biol. (Praha). 42 (5): 227—30. PMID8997639. doi:10.1007/BF02818986.
Przybysz M, Katnik-Prastowska I (2002). „[Multifunction of fibronectin]” [Multifunction of fibronectin]. Postȩpy higieny i medycyny doświadczalnej (на језику: Polish). 55 (5): 699—713. PMID11795204.CS1 одржавање: Непрепознат језик (веза)
Rameshwar, P.; Oh, H. S.; Yook, C.; et al. (2003). „Substance p-fibronectin-cytokine interactions in myeloproliferative disorders with bone marrow fibrosis.”. Acta Haematol. 109 (1): 1—10. PMID12486316. doi:10.1159/000067268.
Dallas SL, Chen Q, Sivakumar P (2006). „Dynamics of assembly and reorganization of extracellular matrix proteins.”. Curr. Top. Dev. Biol. 75: 1—24. PMID16984808. doi:10.1016/S0070-2153(06)75001-3.
Hynes, Richard O. (1990). Fibronectins. Berlin: Springer-Verlag.