Комбинаторика се подједнако тиче решавања проблема као и изградње теорија, мада је развила моћне теоријске моделе, поготово у другом делу двадесетог века. Једна од најстаријих и најчешће коришћених области комбинаторике је теорија графова, која такође има изузетно бројне везе са другим областима.[2]
Постоје многе комбинаторне шеме и теореме у вези са структуром комбинаторних скупова. Оне се обично фокусирају на поделу или уређену поделу скупа. Пример комбинаторног проблема може бити: На колико начина је могуће уредити шпил од 52 различите карте за играње? Одговор је 52! (52 факторијел), што је приближно једнако 8,0658 × 1067. Следи пример мало компликованијег проблема: Ако је дато n људи, да ли је могуће поделити их у скупове тако даје свака особа у најмање једном скупу, сваки пар особа је у тачно једном скупу заједно, свака два скупа имају тачно једну заједничку особу, и ниједан скуп не садржи све особе, све осим једне особе или тачно једну особу? Одговор зависи од n.
Пуни обим комбинаторике није универзално прихваћен.[3] Према Х.Ј. Рајсеру, дефиниција субјекта је тешка јер прекорачује толико математичких подела.[4] У мери у којој се област може описати типовима проблема којима се бави, комбинаторика је укључена у:
набрајање (пребројавање) одређених структура, које се понекад називају аранжмани или конфигурације у веома општем смислу, повезаних са коначним системима,
постојање таквих структура које задовољавају одређене дате критеријуме,
конструкција ових структура, можда на много начина, и
оптимизација: проналажење „најбоље“ структуре или решења међу неколико могућности, било да је „највећа“, „најмања“ или задовољавање неког другог критеријума оптималности.
Леон Мирски је рекао: „комбинаторика је низ повезаних студија које имају нешто заједничко, а ипак се увелико разликују у својим циљевима, њиховим методама и степену кохерентности који су постигли.“[5] Један од начина да се дефинише комбинаторика је, можда, да опише своје поделе са њиховим проблемима и техникама. Ово је приступ који се користи у наставку. Међутим, постоје и чисто историјски разлози за укључивање или неукључивање неких тема под окриље комбинаторике.[6] Иако се првенствено баве коначним системима, нека комбинаторна питања и технике могу се проширити на бесконачно (конкретно, пребројиво) али дискретно окружење.
Комбинаторика је добро позната по ширини проблема којима се бави. Комбинаторни проблеми се јављају у многим областима чисте математике, посебно у алгебри, теорији вероватноће, топологији и геометрији,[7] као и у многим областима њене примене. Многа комбинаторна питања су историјски разматрана изоловано, дајући ад хок решење за проблем који се јавља у неком математичком контексту. У каснијем двадесетом веку, међутим, развијене су моћне и опште теоријске методе, чиме је комбинаторика постала независна грана математике сама по себи.[8] Један од најстаријих и најприступачнијих делова комбинаторике је теорија графова, која сама по себи има бројне природне везе са другим областима. Комбинаторика се често користи у рачунарству за добијање формула и процена у анализи алгоритама.
Математичар који проучава комбинаторику зове се комбинаториста.
Основни комбинаторни концепти и резултати набрајања појавили су се широм античког света. У 6. веку пре нове ере, древни индијскилекарСушрута тврди у Сушрута Самхити да се 63 комбинације могу направити од 6 различитих укуса, узетих један по један, два по један, итд., тако да се израчунавају свих 26 − 1 могућности. ГрчкиисторичарПлутарх расправља о расправи између Крисипа (3. век пне) и Хипарха (2. век пне) о прилично деликатном проблему набрајања, за који се касније показало да је повезан са Шредер-Хипарховим бројевима.[9][10][11] Раније, у Остомахиону, Архимед (3. век пне) је можда разматрао број конфигурација слагалице са плочицама,[12] док су комбинаторичка интересовања вероватно била присутна у изгубљеним Аполонијевим делима.[13][14]
^Rota, Gian Carlo (1969). Discrete Thoughts. Birkhaüser. стр. 50. „... combinatorial theory has been the mother of several of the more active branches of today's mathematics, which have become independent ... . The typical ... case of this is algebraic topology (formerly known as combinatorial topology)”
Graham, Ronald L.; Groetschel, Martin; and Lovász, László; eds. (1996); Handbook of Combinatorics, Volumes 1 and 2. Amsterdam, NL, and Cambridge, MA: Elsevier (North-Holland) and MIT Press. ISBN0-262-07169-X
Lindner, Charles C.; and Rodger, Christopher A.; eds. (1997); Design Theory, CRC-Press; 1st. edition (1997). ISBN0-8493-3986-3.
Joseph, George Gheverghese (1994) [1991]. The Crest of the Peacock: Non-European Roots of Mathematics (2nd изд.). London: Penguin Books. ISBN0-14-012529-9.