Са техничке стране гледишта, електролит је назив за сваку супстанцу која је способна да врши јонски пренос струје.[2] Електролити у овом другом смислу се често деле на течне и чврсте. Електролити у првом смислу се увек могу убројити у електролите у другом, док електролити у другом значењу нису увек и у првом .
Примери електролита
Примери електролита у првом смислу су нпр: водени раствори соли, киселина и база, као и њихови растопи. Ови електролити се деле на слабе и јаке, у зависности од степена дисоцијације:
јаки електролити, потпуно дисосују на јоне: хидроксидилитијума и натријума, киселине, нпр. HCl, HI, HBr, H2SO4, HNO3, HClO4, као и већина неорганских соли које се растварају у води (у изузетке спадају нпр. неке соли живе- Hg(CN)2, Hg2Cl2).
слаби електролити: само делимично дисосују на јоне - H2S, H2SO3, HNO2, CH3COOH.
Историја
У својој дисертацији из 1884, Сванте Аренијус је изнео своје објашњење чврстих кристалних соли које се распадају на упарене наелектрисане честице, за шта је добио Нобелову награду за хемију 1903.[3][4][5][6] Аррхениусово објашњење је било да се приликом формирања раствора со дисоцира на наелектрисане честице, чему је Мајкл Фарадеј (1791-1867) много година раније дао име „јони”. Фарадеј је сматрао да се јони производе у процесу електролизе. Аренијус је предложио да, чак и у одсуству електричне струје, раствори соли садрже јоне. Он је стога предложио да су хемијске реакције у раствору реакције између јона.[4][5][6]
Формирање
Раствори електролита се нормално формирају када се со стави у растварач, као што је вода, и појединачне компоненте се дисоцирају због термодинамичких интеракција између молекула растварача и растворене супстанце, у процесу који се назива „растварање”. На пример, када се кухињска со (натријум хлорид), NaCl, стави у воду, со (чврста супстанца) се раствара у своје компоненте јоне, у складу са реакцијом дисоцијације
Растопљене соли такође могу бити електролити јер, на пример, када се натријум хлорид топи, течност проводи електричну струју. Посебно, јонске течности, које су растопљене соли са талиштем топљења испод 100 °C,[7] су врста високо проводљивих неводених електролита и стога су пронашле све већу примену у горивим ћелијама и батеријама.[8]
Електролит у раствору може се описати као „концентрован” ако има високу концентрацију јона или „разблажен” ако има ниску концентрацију. Ако велики део растворене супстанце дисоцира да би формирао слободне јоне, електролит је јак; ако већина растворене супстанце не дисоцира, електролит је слаб. Својства електролита могу се електролизом искористити за издвајање саставних елемената и једињења садржаних у раствору.
Земноалкални метали формирају хидроксиде који су јаки електролити са ограниченом растворљивошћу у води, због снажне привлачности између саставних јона. Ово ограничава њихову примену у ситуацијама у којима је потребна висока растворљивост.[9]
Године 2021. истраживачи су открили да електролит може „значајно олакшати студије електрохемијске корозије у мање проводљивим медијима”.[10]
У физиологији, примарни јони електролита су натријум (Na+), калијум (K+), калцијум (Ca2+), магнезијум (Mg2+), хлорид (Cl−), хидрогенфосфат (HPO42−−) и хидрогенкарбонат (HCO3−).[11] Симболи електричног набоја плус (+) и минус (-) указују на то да је супстанца јонске природе и да има неуравнотежену расподелу електрона, резултат хемијске дисоцијације. Натријум је главни електролит који се налази у ванћелијској течности, а калијум је главни унутарћелијски електролит;[12] оба су укључена у равнотежу течности и контролу крвног притиска.[13]
Сви познати вишећелијски облици живота захтевају суптилну и сложену равнотежу електролита између унутарћелијског и ванћелијског окружења.[11] Посебно је важно одржавање прецизних осмотскихградијената електролита. Такви градијенти утичу и регулишу хидратацију тела, као и pH крви, и критични су за функцију живаца и мишића. Код живих врста постоје различити механизми који држе концентрације различитих електролита под строгом контролом.
Домаће пиће од електролита може се направити употребом воде, шећера и соли у прецизним пропорцијама.[15] Важно је укључити глукозу (шећер) да би се искористио механизам котранспорта натријума и глукозе. Доступни су и комерцијални препарати[16] за хуману и ветеринарску употребу.
Чврсти електролити
Чврсти електролити се углавном могу поделити у четири групе:
Гелни електролити - веома подсећају на течне електролите. У суштини, то су течности у флексибилном решеткастом оквиру. Често се примењују различити адитиви за повећање проводљивости таквих система.[17]
Суви полимерни електролити - разликују се од течних и гел електролита у смислу да се со раствара директно у чврстом медијуму. Обично је то полимер са високом диелектричном константом (PEO, PMMA, PAN, полифосфазени, силоксани итд) и со са ниском енергијом решетке. Да би се повећала механичка чврстоћа и проводљивост таквих електролита, врло често се користе композити и уводи инертна керамичка фаза. Постоје две велике класе таквих електролита: полимер-у-керамици и керамика-у-полимеру.[18][19][20]
Чврсти керамички електролити - јони мигрирају кроз керамичку фазу помоћу празнина или међупростора унутар решетке. Постоје и стаклокерамички електролити.
^ абCillispie, Charles, ур. (1970). Dictionary of Scientific Biography (1 изд.). New York City: Charles Scribner's Sons. стр. 296—302. ISBN978-0-684101-125.
^ абAlfarouk, Khalid O.; Ahmed, Samrein B. M.; Ahmed, Ahmed; Elliott, Robert L.; Ibrahim, Muntaser E.; Ali, Heyam S.; Wales, Christian C.; Nourwali, Ibrahim; Aljarbou, Ahmed N.; Bashir, Adil H. H.; Alhoufie, Sari T. S.; Alqahtani, Saad Saeed; Cardone, Rosa A.; Fais, Stefano; Harguindey, Salvador; Reshkin, Stephan J. (7. 4. 2020). „The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer”. Cancers. 12 (4): 898. PMID32272658. doi:10.3390/cancers12040898.CS1 одржавање: Формат датума (веза)
^Ye, Shenglong (叶胜龙); Tang, Zhaoyou (汤钊猷) (1986). 细胞膜钠泵及其临床意义. 上海医学 [Shanghai Medicine] (на језику: кинески) (1): 1. Архивирано из оригинала 03. 03. 2017. г. Приступљено 17. 10. 2021.
^Tu, Zhiquan (涂志全) (2004). 张定昌. 电解质紊乱对晚期肿瘤的治疗影响. 中华中西医杂志 [Chinese Magazine of Chinese and Western Medicine] (на језику: кинески) (10). „在正常人体内,钠离子占细胞外液阳离子总量的92%,钾离子占细胞内液阳离子总量的98%左右。钠、钾离子的相对平衡,维持着整个细胞的功能和结构的完整。钠、钾是人体内最主要的电解质成分...”
^J, Estevez E; Baquero E; Mora-Rodriguez R (2008). „Anaerobic performance when rehydrating with water or commercially available sports drinks during prolonged exercise in the heat”. Applied Physiology, Nutrition, and Metabolism. 33 (2): 290—298. PMID18347684. doi:10.1139/H07-188.
^Syzdek J, Armand M, Marcinek M, Zalewska A, Żukowska G, Wieczorek W (2010). „Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytes”. Electrochimica Acta. 55 (4): 1314—1322. ISSN0013-4686. doi:10.1016/j.electacta.2009.04.025.
^Syzdek J, Armand M, Gizowska M, Marcinek M, Sasim E, Szafran M, Wieczorek W (2009). „Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—A novel approach”. Journal of Power Sources. 194 (1): 66—72. Bibcode:2009JPS...194...66S. ISSN0378-7753. doi:10.1016/j.jpowsour.2009.01.070.
^ абвJiangshui Luo; Annemette H. Jensen; Neil R. Brooks; Jeroen Sniekers; Martin Knipper; David Aili; Qingfeng Li; Bram Vanroy; Michael Wübbenhorst; Feng Yan; Luc Van Meervelt; Zhigang Shao; Jianhua Fang; Zheng-Hong Luo; Dirk E. De Vos; Koen Binnemans; Jan Fransaer (2015). „1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells”. Energy & Environmental Science. 8 (4): 1276—1291. S2CID84176511. doi:10.1039/C4EE02280G.
Joyce LeFever Kee; Paulanka, Betty J.; Polek, Carolee (2009). Handbook of Fluid, Electrolyte and Acid Base Imbalances (3. изд.). Delmar Cengage Learning. ISBN978-1-4354-5368-5.
Kamil Perzyna; Regina Borkowska; Jaroslaw Syzdek; Aldona Zalewska; Wladyslaw Wieczorek (2011). „The effect of additive of Lewis acid type on lithium–gel electrolyte characteristics”. Electrochimica Acta. 57: 58—65. doi:10.1016/j.electacta.2011.06.014.
Додатна литература
Friedman, Harold L. (1960). „Mayer's Ionic Solution Theory Applied to Electrolyte Mixtures”. The Journal of Chemical Physics. 32 (4): 1134—1149. Bibcode:1960JChPh..32.1134F. doi:10.1063/1.1730863.
Leaist, Derek G.; Lyons, Philip A. (1981). „Multicomponent diffusion of electrolytes with incomplete dissociation. Diffusion in a buffer solution”. The Journal of Physical Chemistry. 85 (12): 1756—1762. doi:10.1021/j150612a033.