Hookov zákon [húkov ~] podaja raztezek ali skrčekprožnegatelesa pri deformaciji (raztezanju, stiskanju) z dano silo. Hookova sila za vzmet je zgled centralne sile. Raztezek ima nasprotno smer od vračajoče sile, ki vrača vzmet v prvotno stanje.
Zakon se imenuje po angleškem fiziku iz 17. stoletja Robertu Hooku, ki ga je prvič zapisal leta 1676 kot latinski anagram.[1]. Rešitev anagrama je objavil leta 1678[2] kot: ut tensio, sic vis (»kakršen je raztezek, taka je sila«). V delu leta 1678 je navedel, da je pravilo odkril že leta 1660.
Enačba
Velja:
Pri tem je l dolžina neobremenjenega telesa, Δl raztezek (podaljšek, razteg) ali skrček v smeri delovanja zunanje sile F, S0 (začetni) prečni presek telesa, E pa prožnostni modul.
Če definiramo relativni raztezek ε kot razmerje med raztezkom (raztegom) Δl in dolžino neobremenjenega telesa l, (imensko) mehansko napetost σ pa kot razmerje med silo F in (začetnim) prečnim presekom S0, lahko zapišemo sorazmernost v obliki:
Da ločimo imensko napetost od dejanske (odvisne od trenutnega preseka telesa), jo običajno (sploh v strojništvu) označujemo tudi z R, tako da velja zveza med dejansko (pravo) in imensko napetostjo R:
Če vpeljemo koeficient raztezanja α kot obratno vrednost prožnostnega modula, lahko isto sorazmernost zapišemo tudi v obliki:
Razmerje med relativnim raztezkom in relativnim prečnim skrčkom (zožitkom) se označuje z m
kjer je α0 ≈ 1/E, pri nateznih obremenitvah je n = 1,08, pri tlačnih pa n = 1,04. Za druge snovi je n lahko večji od 1 (npr. n = 1,14 do 1,16 za liti cink, granit, beton), ali manjši od 1 (npr. n = 0,7 za usnje, vrvi iz konoplje).
Hookov zakon za silo
Raztezek je premosorazmeren s silo- če silo 2krat povečamo, se tudi raztezek 2krat poveča.
Hookov zakon za vzmet
Za dano vzmet so l, S in E konstante, zato jih lahko zberemo v konstanto vzmetik = ES/l. Hookov zakon lahko za ta primer prepišemo v enostavnejšo linearno obliko, ki povezuje silo in raztezek (razteg) oziroma skrček vzmeti: