kde postupnosť je definovaná rekurzívnym predpisom
Bod c teda patrí do Mandelbrotovej množiny práve vtedy, ak uvedená limita neexistuje, alebo je konečná (napr. c = 0).
Je možné jednoducho dokázať, že postupnosť ide do komplexného nekonečna pre všetky , takže ak ktorýkoľvek člen postupnosti prekročí túto absolútnu hodnotu, potom nie je prvkom Mandelbrotovej množiny.
Vlastnosti
Celá množina leží vnútri kruhu so stredom v počiatku sústavy súradníc a polomerom 2.
Množina pozostáva zo spočítateľne nekonečného množstva podobjektov, podobných kardioidám a kruhom, ktoré sa vzájomne dotýkajú.
Súvislosť s Juliovou množinou
Mandelbrotova množina tvorí akúsi mapu Juliových množín. Každému bodu odpovedá Juliova množina. Pre body vnútri Mandelbrotovej množiny odpovedajú súvislé Juliove množiny, bodom mimo zas nesúvislé a pre hraničné body sú na hranici spojitosti. Vizuálne najzaujímavejšie sú body v okolí hranice Mandelbrotovej množiny.
Tvar Juliovej množiny pripomína okolie korešpondujúceho bodu v Mandelbrotovej množine.
Praktická implementácia
Pri praktickej implementácii sa pre každý bod rovnica opakovane vyčísľuje a vo chvíli, keď |zn| > 2, je zrejmé, že pre daný bod bude rovnica divergovať (a pri grafickom zobrazovaní sa táto hodnota n, pre ktorú bod túto hranicu prekročil, spravidla prevádza na farbu). Ak ani po dopredu zvolenom počte iterácii k prekročeniu tejto hranice nedôjde, je bod považovaný za súčasť Mandelbrotovej množiny. Nastavenie tejto hranice ovplyvňuje výsledný obrázok: pre príliš malú hodnotu budú niektoré body nesprávne označené ako patriace do množiny, ale veľký počet iterácii vyžaduje dlhší čas výpočtu.
Výpočet je možné urýchliť tiež tým, že sa rýchlo detegujú body, ktoré do množiny evidentne patria, pretože sa nachádzajú vnútri hlavných častí množiny – kružnice a kardioidy.