Neutralita a nestrannosť tohto článku je ľahko spochybniteľná alebo sporná. Upravujte preto článok opatrne a predtým si, prosím, prečítajte diskusiu.
Jadrový reaktor je zariadenie, ktoré slúži na spustenie a riadenie jadrovej reťazovej reakcie. Jadrové reaktory sú používané v atómových elektrárňach a ako pohon plavidiel. Niektoré reaktory sa používajú na produkciu izotopov pre lekárske a priemyselné použitie, alebo na produkciu plutónia, ktoré sa používa na vojenské účely. Niektoré reaktory slúžia iba na výskumné účely.
Dejiny, úvod
Prvý jadrový reaktor (uránovo-grafitový) bol uvedený do prevádzky v roku 1942 v Chicagu pod vedením Enrica Fermiho – Chicago Pile-1.[1] Využitie jadrovej energie na pohon lodí a ponoriek je myšlienkou dr. Rossa Gunna.
Prvá energetická jadrová elektráreň na svete bola pripojená k sieti v roku 1954 v Obninsku pri Moskve. Jej tepelný výkon je 30 MW a elektrický 5 MW. Do roku 2004 bolo postavených viac ako 438 jadrových reaktorov na výrobu elektrickej energie v tridsiatich krajinách sveta, s celkovou kapacitou 370,000 MWe, čo predstavovalo 16 % celkovej výroby elektrickej energie na Zemi. Počet inštalovaných reaktorov stále narastá, zároveň však dochádza k vyraďovaniu starých reaktorov. Okrem toho 56 krajín používa 284 výskumných reaktorov a ďalších 220 reaktorov je inštalovaných na lodiach a ponorkách.[2] K augustu 2020 bolo na svete v prevádzke približne 440 reaktorov na výrobu elektrickej energie, pričom zabezpečovali asi 10 % celkovej výroby elektrickej energie na planéte (10,2 % v roku 2017).[3] Viac než polovicu elektrickej energie vo svojom mixe vyrábajú z jadra Francúzsko, Slovensko, Maďarsko a Ukrajina.[3]
Jadrové elektrárne sú v podstate tepelné elektrárne, ktoré používajú namiesto parného kotla jadrový reaktor s parným generátorom. Rozdiel je iba v použitom druhu paliva a spôsobe jeho premeny na teplo. Reaktor využíva väzbovú energiu jadra, ktorá sa uvoľňuje pri štiepení jadier ťažkých prvkov. Opakom je uvoľňovanie energie pri fúzii (spájaní) jadier ľahkých prvkov.
Pre energetické účely sa využíva štiepna reakcia, ktorá je dobre technologicky zvládnutá. Vieme ju bezpečne riadiť a regulovať. Momentálne sa pracuje na snahe o zvládnutie riadenia aj termonukleárnej reakcie – fúzie, do ktorej sú zásoby paliva na rozdiel od uránu prakticky nevyčerpateľné.
Časti jadrového reaktora
1) palivo – palivové články
prírodný urán obsahuje 0,72 % 235U a 99,274 % 238U
obohacovaním sa zvyšuje podiel 235U, pre energetické reaktory obvykle na 2,5-3,5 %, v niektorých prípadoch až na 5 %
235U sa nazýva štiepnym (energetickým) materiálom - záchytom neutrónu dochádza k rozštiepeniu na dve časti
238U sa nazýva množivým materiálom - záchytom neutrónu nedochádza k rozštiepeniu, atómové číslo sa zvyšuje a následnými rádioaktívnymi premenami jadro prechádza na Pu, ktorý sa využíva na vojenské účely
plutónium 239Pu je tiež možné v reaktore použiť ako palivo, zmes plutónia s uránom sú takzvané MOX palivá (mixed/metall oxid fuel)
moderátor sa zrážkami s neutrónmi zahrieva a pri väčších ako zanedbateľných výkonoch reaktora sa musí chladiť
moderátor nie je nevyhnutnou súčasťou jadrového reaktora, reaktory s rýchlymi neutrónmi moderátor nepotrebujú
3) riadiace (regulačné) tyče
vsúvajú sa do prostredia jadrového štiepenia, ich úlohou je pohlcovať sekundárne neutróny a udržať multiplikačný faktor na hodnote 1; regulačné tyče sú zliatiny ocele a kadmia Cd alebo bóru B
4) bezpečnostné (havarijné) tyče
majú rovnakú funkciu ako regulačné tyče, využívajú sa na zastavenie štiepnej reakcie predovšetkým v nebezpečných situáciach
5) reflektor neutrónov
látka, ktorá obklopuje reakčné prostredie reaktora, býva zhotovená prevažne z grafitu; dokáže odrážať neutróny
6) betónové tienenie
chráni okolie jadrového reaktora v prípade havárie, straty kontroly nad štiepnou reakciou a následným únikom ionizujúceho žiarenia
Princíp činnosti
V jadrových reaktoroch sa ako štiepny materiál používa izotop uránu - 235U. 235U sa záchytom neutrónu mení na 236U, ktorý je nestabilný, v dôsledku čoho sa jeho jadro štiepi najčastejšie na dve časti (fragmenty). Po každom štiepení sa uvoľní presne 188MeV energie (vyplýva zo zákona zachovania energie). Pre zjednodušenie uvažujeme s 200MeV, ktoré sa rozdelia medzi štiepne fragmenty 160MeV a energiu rádioaktívnych premien 40MeV (beta častice 8MeV, gama fotóny 15MeV, neutróny 7MeV, neutrína 10MeV).
Palivo v podobe palivových kaziet je umiestnené v tlakovej nádobe reaktora, do ktorého prúdi chemicky upravená voda. Voda preteká kanálikmi v palivových kazetách a odvádza teplo, ktoré vzniká pri štiepnej reakcii. Voda z reaktora vystupuje s teplotou asi 297°C a prechádza horúcou vetvou primárneho potrubia do tepelného výmenníka - parogenerátora. V parogenerátore preteká zväzkom rúrok a odvádza teplo vode, ktorá je privádzaná zo sekundárneho okruhu s teplotou 222°C. Ochladená voda primárneho okruhu sa vracia späť do aktívnej zóny reaktora.
Voda sekundárneho okruhu sa v parogenerátore odparuje a cez parný kolektor sa para odvádza na lopatky turbín. Hriadeľ turbíny je mechanicky spojený s rotorom generátora, ktorý je budený budičom jednosmerného napätia. Vďaka tomu tam vzniká magnetické pole a na troch statorových cievkach generátora sa tam následne indukuje striedavé napätie 15,6 kV.
Transformátor, elektrický netočitý stroj, premieňa – transformuje vyrobené napätie 15,6 kV na napätie vysoké alebo veľmi vysoké (110 kV alebo 400 kV).
Para sa kondenzuje v kondenzátore, tepelnom výmenníku, a vracia sa späť do parogenerátora vo vodnom skupenstve.
Platí rovnica:
Počet neutrónov vzniknutých z prechádzajúceho štiepenia = Počet neutrónov, ktoré vyvolajú nové štiepenia + Počet neutrónov zachytených v konštr. materiáloch, moderátore, absorbátore.
Jadrový reaktor sa počas prevádzky nachádza v troch stavoch:
a) podkritický stav
Multiplikačný koeficient < 1
Počet predchádzajúcich štiepení > Počet nasledujúcich štiepení
Dôsledok - znižovanie počtu štiepení, znižovanie počtu voľných neutrónov, znižovanie výkonu reaktora
b) kritický stav
Multiplikačný koeficient = 1
Počet predchádzajúcich štiepení = Počet nasledujúcich štiepení
Dôsledok - stabilizovaný stav, stabilizovaný výkon reaktora
c) nadkritický stav
Multiplikačný koeficient > 1
Počet predchádzajúcich štiepení < Počet nasledujúcich štiepení
Dôsledok - zvyšovanie počtu štiepení, zvyšovanie počtu voľných neutrónov, zvyšovanie výkonu reaktora
Na reguláciu rýchlosti štiepenia sa používa tzv. moderátor napr. ťažká voda, grafit, berýlium a absorbátor napr. H3BO3 (kyselina boritá).
Energia, ktorá zo štiepnej reakcie vzíde, výrazne zvyšuje kinetickú energiu molekúl vody či oxidu uhličitého v primárnom chladiacom okruhu. Tá sa pri výmene tepla vo výmenníku prenáša na vodu či oxid uhličitý v sekundárnom okruhu. V dôsledku toho sa táto voda mení na paru s obrovskou Ek a svojou vlastnou silou roztáča turbínu, ktorá poháňa elektrický generátor.
V súčasnosti sú známe 4 generácie reaktorov, I. predstavuje úplné začiatky a prvé výskumné reaktory, II. väčšinu svetových reaktorov, ktoré vznikali medzi rokmi 1965-1999, III. technické vylepšenia II. generácie po roku 1996 a III+. generácia ďalšie vylepšenia po roku 2017.[6]
Bezpečnosť
Základný princíp bezpečnosti jadrových reaktorov a celých jadrových elektrární je založený na tzv. princípe ochrany do hĺbky. Ochrana do hĺbky je u prevádzkovaných elektrární založená na 4 fyzických bariérách a 5 úrovniach ochrany.[7] Moderné bezpečnostné štandardy, pravidelne sa sprísňujúce po jadrových haváriách na Three Mile Island, v Černobyli a Fukušime, požadujú potrebu zabezpečenia jadrových elektrární voči možnému úniku rádioaktívneho odpadu do okolia. Bežný jadrový reaktor, napr. typ VVER-440, využívaný na Slovensku, má štyri úrovne bariér:
Prvou bariérou úniku radiácie je obal palivových článkov
Druhou bariérou je tlaková nádoba
Treťou bariérou je samotná ochranná nádoba, v ktorej je reaktor uložený alebo tlakový systém primárneho okruhu.[7] Pri úniku chladiaceho média z primárneho okruhu by vzniklo množstvo rádioaktívnej pary. Jej úniku do okolia bráni ochranná nádoba.[8]
Štvrtou bariérou je tzv. kontajnment, cca 1,5 m hrubá betónová konštrukcia, ktorej funkciu pri elektrárňach VVER-440 spĺňa obal primárneho okruhu, t.j. hermetické boxy spolu s barbotážnou vežou.[7]