Zeno's paradoxes

Zeno's paradoxes are a famous set of thought-provoking stories or puzzles created by Zeno of Elea in the mid-5th century BC. Philosophers, physicists, and mathematicians have argued for 25 centuries over how to answer the questions raised by Zeno's paradoxes.

Nine paradoxes have been attributed to him. Zeno constructed them to answer those who thought that Parmenides's idea that "all is one and unchanging" was absurd. Three of Zeno's paradoxes are the most famous: two are presented below. They all deal with problems of the apparently continuous nature of space and time.

Achilles and the tortoise

In the paradox of Achilles and the Tortoise, Achilles is in a footrace with the tortoise. Achilles allows the tortoise a head start of 100 metres, for example. Suppose that each racer starts running at a constant speed, one very fast and one very slow. After some finite time, Achilles will have run 100 metres, bringing him to the tortoise's starting point. During this time, the slower tortoise has run a much shorter distance. It will then take Achilles some further time to run that distance, by which time the tortoise will have advanced farther. It will then take still more time for Achilles to reach this third point, while the tortoise again moves ahead. Thus, whenever Achilles reaches somewhere the tortoise has been, he still has farther to go. Therefore, because there are an infinite number of points Achilles must reach where the tortoise has already been, he can never overtake the tortoise.[1][2]

The dichotomy paradox

Suppose someone wishes to get from point A to point B. First, they must move halfway. Then, they must go half of the remaining way. Continuing in this manner, there will always be some small distance remaining, and the goal would never actually be reached. There will always be another number to add in a series such as 1 + 1/2 + 1/4 + 1/8 + 1/16 + .... So, motion from any point A to any different point B seems an impossibility. Going half the distance to a destination means you will not ever reach it, since you will have to go halfway from wherever you are at.

Commentary

This then is where Zeno's paradox lies: both pictures of reality cannot be true at the same time. Hence, either: 1. There is something wrong with the way we perceive the continuous nature of time, 2. In reality there is no such thing as a discrete, or incremental, amounts of time, distance, or perhaps anything else for that matter, or 3. There is a third picture of reality that unifies the two pictures--the mathematical one and the common sense or philosophical one--that we do not yet have the tools to fully understand.

Proposed solutions

Few people would bet that the tortoise would win the race against an athlete. But, what is wrong with the argument?

As one begins adding the terms in the series 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + ...., one may notice that the sum gets closer and closer to 1, and will never exceed 1. Aristotle (who is the source for much of what we know about Zeno) noted that as the distance (in the dichotomy paradox) decreases, the time to travel each distance gets exceedingly smaller and smaller. Before 212 BC, Archimedes had developed a method to get a finite answer for the sum of infinitely many terms which get progressively smaller (such as 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ...). Modern calculus achieves the same result, using more rigorous methods.[3][4]

Some mathematicians, such as Carl Boyer, think that Zeno's paradoxes are just mathematical problems, for which modern calculus provides a mathematical solution.[3] However, Zeno's questions remain problematic if one approaches an infinite series of steps, one step at a time. This is known as a 'supertask'. Calculus does not actually involve adding numbers one at a time. Instead, it determines the value (called a limit) that the addition is approaching.

References

  1. "Math Forum". Retrieved 2012-09-12., matchforum.org
  2. Huggett, Nick (2010). "Zeno's Paradoxes: 3.2 Achilles and the Tortoise". Stanford Encyclopedia of Philosophy. Retrieved 2012-09-12.
  3. 3.0 3.1 Boyer, Carl (1959). The history of the calculus and its conceptual development. Dover Publications. p. 295. ISBN 978-0-486-60509-8. If the paradoxes are thus stated in the precise mathematical terminology of continuous variables (...) the seeming contradictions resolve themselves.
  4. Thomas, George B. 1951. Calculus and analytic geometry Addison Wesley.

Read other articles:

ToubkalTubkal / ⵜⵓⴱⴽⴰⵍ توبقال / توبكالTizi'n'Toubkal dari puncak bukitTitik tertinggiKetinggian4.165 m (13.665 ft)[1]Puncak3.755 m (12.320 ft)[1]Urutan 36GeografiToubkalMarokoPegununganPegunungan AtlasPeta topografiToubkal Massif Map and Guide [2] Jbel Toubkal atau Tubkal (Berber: ⵜⵓⴱⴽⴰⵍ, Tubkal, atau ⵜⵓⴱⵇⴰⵍ, Tubqal; Arab: توبقال) adalah puncak gunung di barat daya Maroko, 63 km sebelah selatan k...

 

Drive BySingel oleh Traindari album California 37Dirilis10 Januari 2012Direkam2011GenrePop rockDurasi3:16LabelColumbiaPencipta Pat Monahan Espen Lind Amund Bjørklund Produser Espionage Butch Walker Kronologi singel Train Save Me, San Francisco (2011) Drive By (2012) 50 Ways to Say Goodbye (2012) Drive By adalah lagu dari band pop rock asal Amerika Serikat Train dari album studio keenam mereka, California 37. Lagu ini dirilis di Amerika Serikat sebagai singel utama album pada 10 Januari 2012,...

 

Kermanshah کرمانشاهKotaBerkas:Taqwesan Blvd.jpgJulukan: Tanah Sejarah & Mitos; Tanah Kekasih Abadi; Tanah Shirin & FarhadKermanshahKoordinat: 34°18′51″N 47°03′54″E / 34.31417°N 47.06500°E / 34.31417; 47.06500Koordinat: 34°18′51″N 47°03′54″E / 34.31417°N 47.06500°E / 34.31417; 47.06500Negara IranProvinsiKermanshahShahrestanKermanshahBakhshPusatDidirikanAbad ke-4Pemerintahan • Wali Kota...

Finnish political party Animal Justice Party of Finland Eläinoikeuspuolue (Finnish)Djurrättspartiet (Swedish)AbbreviationEOPChairmanTatu CanthFounded2015 (2015)HeadquartersYlännekatu 14 E 40, TurkuIdeologyAnimal rightsAnimal welfareSloganÄäni elämälle[1] (A voice for life)Websitewww.eop.fiPolitics of FinlandPolitical partiesElections Animal Justice Party of Finland (Finnish: Eläinoikeuspuolue, Swedish: Djurrättspartiet) is a political party in Finland founded i...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Former American weather satellite TIROS-10TIROS-10Mission typeWeather satelliteOperatorNASACOSPAR ID1965-051A SATCAT no.1430 Spacecraft propertiesSpacecraft typeTIROSManufacturerRCA / GSFCLaunch mass138.30 kilograms (304.9 lb)[1]Dimensions1.07 m × 0.56 m (3.5 ft × 1.8 ft) Start of missionLaunch dateJuly 2, 1965, 04:07 (1965-07-02UTC04:07Z) UTC[2]RocketThor-Delta CLaunch siteCape Canaveral LC-17B End of missionLast contact...

Северный морской котик Самец Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапси...

 

Mosque in Cairo, Egypt This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Mosque of Khushqadam el-Ahmadi – news · newspapers · books · scholar · JSTOR (February 2012) The Mosque of Khushqadam el-Ahmadi is on el-Seyufia Street in Cairo and was built in 1366. The building was originally the palace of Em...

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

Couvent Sainte-AgnèsPrésentationType Bâtiment de musée, monastèreFondation 1231Ordres religieux Ordre des Prêcheurs, ordre des Frères mineurs, ordre de Sainte-ClairePropriétaire PragueUsage Monastère (1231-1782)Patrimonialité Monument culturel national (d)LocalisationAdresse 12 Anežská (d) , U milosrdných (d) , Malá Klášterní (d) et Klášterská (d) Prague TchéquieCoordonnées 50° 05′ 33″ N, 14° 25′ 29″ Emodifier - modifier le co...

 

Shorinji Kempo (少林寺拳法)FokusCampuranKekerasanKontak penuhNegara asal JepangPenciptaDoshin SoPraktisi terkenalSonny ChibaOrang tuaKung Fu ShaolinOlahraga olimpikTidak Shorinji Kempo (少林寺拳法) adalah salah satu dari seni bela diri yang berasal dari Jepang. Di Indonesia biasa disebut dengan Kempo saja. Shorinji Kempo diciptakan oleh Doshin So[1] (宗 道臣) pada tahun 1947 sebagai sistem pelatihan dan pengembangan diri (行: gyo atau disiplin dalam bahasa jepang).[2...

 

القرن العشرون هو الفترة الزمنية الممتدة من اليوم الأول لعام 1901 إلى اليوم الأخير من عام 2000 حسب التقويم الميلادي. ألفية: ألفية 2 قرن: القرن 19 القرن 20 القرن 21 قائمة العقود: عقد 1900 عقد 1910 عقد 1920 عقد 1930 عقد 1940 عقد 1950 عقد 1960 عقد 1970 عقد 1980 عقد 1990 تصانيف: مواليد – وفيات تأسيسا...

Gandsfjorden dilihat dari Sandnes. Gandsfjord adalah sebuah fyord di Rogaland, Norwegia. Gandsfjord merupakan lengan Boknafjorden yang terletak dekat dengan kota Stavanger dan Sandnes. Seluruh sisi barat Gandsfjord sudah tersentuh pembangunan. Sisi timur fyord masih berupa pegunungan dan puncak. Di bagian terluar fyord ini terdapat beberapa pulau. Koordinat: 58°54′N 5°45′E / 58.900°N 5.750°E / 58.900; 5.750 Artikel bertopik geografi atau tempat Norwegia ini ada...

 

American politician Herman A. MetzNew York City ComptrollerIn office1906–1909MayorGeorge B. McClellan, Jr.Preceded byEdward M. GroutSucceeded byWilliam A. PrendergastMember of the U.S. House of Representativesfrom New York's 10th districtIn officeMarch 4, 1913 – March 3, 1915Preceded byWilliam SulzerSucceeded byReuben L. Haskell Personal detailsBornHerman August Metz(1867-10-19)October 19, 1867New York, New YorkDiedMay 17, 1934(1934-05-17) (aged 66)New Rochelle, ...

 

Annual science fiction convention held in Chattanooga, Tennessee ChattaconStatusActiveGenreScience fictionVenueDoubleTree by HiltonLocation(s)Chattanooga, TennesseeCountryUnited StatesInaugurated1976Attendance1,200+ (2014)[1]Organized byChattanooga Speculative Fiction Fans, Inc.Filing status501(c)(3)Websitehttp://www.chattacon.org/ Chattacon is an annual science fiction convention held in Chattanooga, Tennessee.[2] The convention is organized by the nonprofit Chattanooga ...

New company developing a novel, scalable business Startup redirects here. For other uses, see Startup (disambiguation). This article uses parenthetical referencing, which is deprecated on Wikipedia. Please help improve this article if you can. (July 2023) (Learn how and when to remove this message) A startup or start-up is a company or project undertaken by an entrepreneur to seek, develop, and validate a scalable business model.[1][2] While entrepreneurship includes all new b...

 

Возможно, эта статья содержит оригинальное исследование. Проверьте соответствие информации приведённым источникам и удалите или исправьте информацию, являющуюся оригинальным исследованием. В случае необходимости подтвердите информацию авторитетными источниками. В �...

 

Barnstar The Special Barnstar For all your help on getting WP:NRHP 75% Illustrated Smallbones(smalltalk) 02:32, 3 April 2016 (UTC)[reply] Welcome Welcome! Have some cookies! Welcome to Wikipedia, Colinhester! My name is Jonathunder. I just wanted to say howdy and welcome you to Wikipedia! If you have any questions, feel free to leave me a message on my talk page or press the Request Help button at the bottom of this message. I hope you like the place and decide to stay. Here are some pages t...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: アストンマーティン・DBS – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2022年12月) DBS(2011年モデル) DBSとは、イギ�...

 

Football League 1890-1891 Competizione Premier League Sport Calcio Edizione 3ª Organizzatore Football League Date dal 6 settembre 1890al 18 aprile 1891 Luogo  Inghilterra Partecipanti 12 Formula Girone all'italiana Risultati Vincitore Everton(1º titolo) Statistiche Miglior marcatore John Southworth (26) Incontri disputati 132 Gol segnati 554 (4,2 per incontro) La rosa dell'Everton campione d'Inghilterra 1890-91 Cronologia della competizione 1889-1890 1891-1892 Manual...