Kipući reaktor

Presjek kroz kipući reaktor: 1. reaktorska posuda, 2. gorivni štapovi nuklearnog goriva, 3. kontrolni štapovi, 4. cirkulacijska pumpa vode, 5. motori kontrolnih štapova, 6. pregrijana para, 7. napojna voda, 8. parna turbina visokog tlaka, 9. parna turbina niskog tlaka, 10. električni generator, 11. pobuda generatora, 12. kondenzator, 13. rashladna tekućina, 14. predgrijač, 15. pumpa napojne vode, 16. pumpa rashladne tekućine, 17. betonsko kućište, 18. spoj prema elektroenergetskom sustavu.
Prvi kipući reaktor BWR u Nuklearnoj elektrani Browns Ferry.
Nuklearna elektrana Fukushima, zračna snimka iz 1975.
Tri nuklearna reaktora u nuklearnoj elektrani Fukushima I su se pregrijala, što je vodilo do topljenja jezgri nuklearnih reaktora i eksploziji, uzrokujući oslobađanje velikih količina radioaktivnog materijala u atmosferu. [1]
Sustav hlađenja kod kipućih reaktora BWR.

Kipući reaktor ili reaktor s ključajućom vodom (eng. Boiling Water Reactor; BWR) ima rashladno sredstvo na nižem tlaku (70 bar) od tlačnog reaktora PWR, što omogućava ključanje vode unutar reaktorske posude tako da para, nakon prolaska kroz separatore vlage i sušionike pare, direktno odlazi u parnu turbinu. S obzirom da para nastaje u nuklearnom reaktoru, sekundarni krug i parogeneratori nisu potrebni, što je pozitivno sa sigurnosnog gledišta. Nadalje, ako u kipućem reaktoru BWR prestanu raditi cirkulacijske pumpe, tada se zbog povećanog udjela pare unutar posude povećava prirodna cirkulacija i dovoljna je za odvod ostatne topline. Uz to povećanje snage reaktora povećava udio pare, što smanjuje moderaciju, a to za posljedicu ima smanjenje snage (reaktor ima samoregulacijsko svojstvo). Protok rashladne tekućine kroz kipuću reaktoru BWR jezgru niži je nego kod PWR jezgre, zbog visoke topline isparavanja vode. Približno 15% vode ispari prilikom prolaska kroz jezgru. Uz to nejednolika aksijalna raspodjela gustoće moderatora uzrokuje aksijalnu ovisnost snage (snaga je veća u donjem dijelu jezgre), te je nužna regulacija rada kontrolnim štapovima. Kontrolni štapovi ulaze u jezgru s donje strane, za razliku od tlačnog reaktora PWR, gdje se nalaze iznad jezgre reaktora. Loša osobina je i da slabo radioaktivna para zagađuje radioaktivno turbinu. Niži radni tlak zahtijeva manju debljinu stijenke reaktorske posude, ali je sama posuda većih dimenzija, odnosno mase. [2]

Način rada

Kipući reaktor BWR je jedna vrsta lakovodnih reaktora, koju je sredinom 1950-ih godina 20. stoljeća razvio General Electrics (SAD). Petina aktivnih nuklearnih elektrana ima kipući reaktor. Zbog svoje robusnosti ovi reaktori se nisu razvijali za pogon podmornica, nego isključivo za proizvodnju električne energije. Gorivo je obogaćeni uranij. U reaktorskoj posudi kipućeg reaktora tlak je niži nego u tlačnim reaktorima. Za njih je svojstveno da se voda pretvara u paru pri prolasku kroz nuklearni reaktor i vodi izravno u turbinu, gdje se nakon obavljenoga posla kondenzira, te se vraća natrag u reaktorsku posudu. Budući da kipući reaktor nema parogenerator, u usporedbi s tlačnim reaktorima on je jednostavnije konstrukcije.

U kipućem reaktoru rashladno se sredstvo nalazi na nižem tlaku (70 bara), što omogućava ključanje vode unutar reaktorske posude, tako da para, nakon prolaska kroz separatore (odvajanje) vlage i sušioce pare, direktno odlazi u parnu turbinu. S obzirom da para nastaje u reaktoru, sekundarni krug i parogeneratori nisu potrebni, što je iz sigurnosnih razloga pozitivno. Nadalje, ako u ključajućem reaktoru prestanu raditi cirkulacijske pumpe, tada se zbog povećanog udjela pare unutar posude povećava prirodna cirkulacija, koja je dovoljna za odvod zaostale topline. Osim toga, povećanje snage reaktora povećava udio pare, što smanjuje moderaciju (usporivač neutrona), a to za posljedicu ima smanjenje snage, što znači da reaktor ima samoregulacijsko svojstvo. [3]

Protok rashladne tekućine kroz jezgru kipućeg reaktora BWR niži je nego u tlačnom reaktoru PWR, zbog visoke topline isparavanja vode. Približno 15% vode ispari prilikom prolaska kroz jezgru. Uz to, nejednaka aksijalna raspodjela gustoće moderatora uzrokuje aksijalnu ovisnost snage (snaga je veća u donjem dijelu jezgre), te je nužna regulacija rada kontrolnim štapovima. Kontrolni štapovi ulaze u jezgru s donje strane, za razliku od tlačnog reaktora, gdje se nalaze iznad jezgre reaktora. Loša mu je osobina da slabo radioaktivna para kontaminira turbinu. Niži radni tlak zahtijeva manju debljinu stijenke reaktorske posude, ali je sama posuda većih dimenzija, odnosno mase. Danas je u uporabi više od 80 reaktora ovoga tipa. [4]

Nuklearna elektrana Fukushima

Nuklearna elektrana Fukushima ima 6 nuklearnih reaktora zasnovanih na kipućoj vodi ili BWR reaktor. Kipući reaktor BWR pretvara energiju kipuće vode u električnu struju, tj. koristi vodenu paru za okretanje turbine. Nuklearno gorivo zagrijava vodu do vrelišta, vodena para potom pokreće turbine koje energiju vodene pare pretvaraju u mehaničku, te na kraju u električnu energiju. Vodena para se potom hladi i stlačuje pri čemu opet nastaje tekuća voda, koja se ponovno vodi na zagrijavanje nuklearnim gorivom. Sam reaktor radi na otprilike 285 °C.

Kao nuklearno gorivo koristi se obogaćeni uranijev dioksid UO2, koji je zapravo keramika s izuzetno visokom temperaturom tališta (otprilike 2800 °C). Gorivo se proizvodi u obliku komadićima (cilindrima visokim oko 1 cm s promjerom od također 1 cm). Ti se komadići ubacuju u dugačke cijevi izrađene od slitine cinka, koje karakterizira temperatura pregrijavanja od 1200 °C. Pregrijavanje najčešće uzrokuje autokatalizirana oksidacija vode. Čvrsto zatvorene cijevi ispunjene komadićima uranijeva dioksida nazivaju se plašt nuklearnog goriva. Nekoliko stotina takvih, uredno položenih cirkonijevih cijevi, čini jezgru nuklearnog reaktora.

Keramička priroda uranijeva dioksida prva je linija zaštite od radijacije, koja nastaje tijekom procesa nuklearne fisije. Kućišta od cirkonija druga su linija zaštite. Ona odvajaju radioaktivno gorivo od ostatka reaktora. Jezgra se potom stavlja u spremnik pod tlakom od otprilike 7 MPa. Spremnik je načinjen tako da može izdržati visoke tlakove koji mogu nastati kao posljedica nesreće u elektrani. Spremnici su treća linija zaštite od eventualnog oslobađanja radioaktivnog materijala. I glavni i sekundarni spremnik nalaze se u reaktorskoj zgradi. Reaktorska zgrada služi kao vanjski oklop koji reaktor štiti od vanjskih uvjeta i ne dopušta izmjenu tvari s vanjskim svijetom. Upravo je reaktorska zgrada oštećena u eksploziji.

Događaji u Fukušimi 12. ožujka 2011.

Potres koji je pogodio Japan je bio jači od najjačeg potresa koji može izdržati zgrada nuklearne elektrane. Richterova ljestvica je zapravo logaritamska ljestvica, pa je potres jačine 8,9 stupnja po Richteru čak 5 puta jači od potresa jačine 8,2 stupnjeva po Richteru. U trenutku udara, nuklearni reaktori su automatski prestali s radom. Nekoliko sekundi nakon udara, u jezgru su ubačeni kontrolni štapovi i tako je prekinuta nuklearna lančana reakcija. Tada je sustav za hlađenje trebao izvući ostatnu toplinu iz reaktora, koja normalno iznosi 7% ukupne topline koju reaktor oslobađa u normalnim uvjetima. Međutim, potres je uništio vanjski izvor električne energije koji napaja nuklearnu elektranu. Riječ je o izuzetno nezgodnom kvaru poznatom i pod nazivom "gubitak vanjske snage". Prema nacrtima bi u takvom slučaju reaktor i rezervni sustavi trebali sami održavati sustav hlađenja. Pošto je nakon potresa reaktor ugašen, on ne može sam od sebe proizvoditi električnu energiju potrebnu za održavanje rada pumpi za hlađenje. [5]

Unutar prvog sata nakon potresa, pokrenut je prvi sustav dizelskih generatora struje, koji je trebao napajati pumpe za hlađenje. Međutim, ubrzo je Japan pogodio razorni cunami, koji je poplavio dizelske generatore, te tako prekinuo napajanje sustava hlađenja. Inače je takav cunami vrlo rijedak, a bio je jači od najjačeg očekivanog. Jedno od osnovnih pravila izgradnje nuklearnih elektrana jest dobro organiziran sustav zaštite u slučaju nuklearne nesreće. Naime, nuklearke bi trebale, po svom ustroju, moći preživjeti teška oštećenja na čak nekoliko sustava istovremeno. Plan reakcije na prirodne nesreće uključivao je i mogućnost udara velikog cunamija na dizelske generatore. Međutim, tsunami koji je 11. ožujka udario na Fukušimu po jačini je nadmašio sva očekivanja. Kao odgovor na novonastalu situaciju, inženjeri su postavili dodatnu liniju obrane smjestivši cijelu aparaturu u zaštitni spremnik.

Kada su dizelski generatori prestali raditi, osoblje koje je ostalo upravljati elektranom je reaktor nastavilo napajati iz posebnih baterija. Baterije su zamišljene kao još jedan od sustava zaštite i mogu osigurati neprestano hlađenje jezgre u trajanju od 8 sati. Nakon 8 sati, baterije su prestale s radom, što znači da ništa više ne može osigurati napajanje sustava za odvođenje ostatne topline. U tom je trenutku osoblje elektrane započelo s protokolom u slučaju krajnje nužde. Nakon što su baterije prestale raditi i izgubio se svaki način odvođenja ostatne topline, počela se spominjati mogućnost taljenja jezgre. Bez hlađenja, jezgra bi se mogla rastaliti u roku nekoliko dana s tim da bi cijeli sadržaj ostao u zaštitnom spremniku. Pošto je ostalo još dovoljno vremena do taljenja jezgre, svi su napori usmjereni prema održavanju rada reaktora i cijevi s nuklearnim gorivom koji su se počeli sve jače zagrijavati.

Hlađenje jezgre i dalje je ostao glavni zadatak. Reaktor je povezan s mnogo međusobno neovisnih i različitih sustava hlađenja (sustav čišćenja reaktorske vode, sustav odvođenja ostatne topline, sustav hlađenja reaktora toplinskom izolacijom, sigurnosni sustav hlađenja posebnom tekućinom itd.). Na osoblje elektrane pao je zadatak da odvedu što više ostatne topline iz reaktora, kako god znaju i umiju i to u uvjetima bez stalnog dotoka električne energije. Međutim, sve dok oslobođena toplina nadmašuje uklonjenu toplinu, u reaktoru se nakuplja sve više vodene pare, zbog čega u reaktoru neprestano raste tlak. U ovom je trenutku glavni zadatak očuvati integritet strukture cijevi s gorivom održavajući temperaturu ispod 1200 °C i tlak na razumnoj razini. Ne bi li smanjili pritisak u reaktoru s vremena na vrijeme je potrebno osloboditi višak nakupljene vodene pare. Reaktorski spremnik i zaštitni spremnik za gorivo opremljeni su brojnim ventilima za smanjenje tlaka.

Dakle, nakupljena para i ostali plinovi povremeno se otpuštaju u okoliš. Neki od tih plinova sadrže radioaktivne produkte nuklearne fisije, ali u vrlo malom udjelu. Dakle, tijekom regulacije tlaka, u okoliš zaista je ispuštena mala količina radioaktivnog materijala, ali na kontroliran način: plinovi su propušteni kroz posebni sustav filtara, ne bi li se uklonilo što veći broj radioaktivnih čestica. Ti plinovi sami po sebi nisu predstavljali veliku opasnost za okolno stanovništvo. Taj je protokol odobren, jer bi u suprotnom posljedice bile katastrofalne.

U međuvremenu su u elektranu dovezeni pokretni generatori koji su djelomično zadovoljili energetske potrebe sustava za hlađenje. S druge strane, voda predviđena za hlađenje neprestano isparava, a povremeno se i ispušta u okoliš, što znači da je sustav hlađenja dodatno na gubitku. U jednom je trenutku vjerojatno razina vode u reaktoru pala ispod vrhova cijevi s gorivom. Temperatura nekih cijevi prešla je 1200 °C i započela je kemijska reakcija cirkonija s reaktorskom vodom. Kao produkt te reakcije nastao je plinoviti vodik, koji je ušao u sastav plinova koji se povremeno ispuštaju u okoliš. Postoji protokol čak i za takav slučaj, međutim osoblje elektrane nije znalo koliko se vodika proizvodi, jer nisu znali niti točnu temperaturu reaktora. Kada se dovoljno vodika pomiješa sa zrakom nastaje eksplozivna smjesa poznata pod nazivom 'praskavac'.

Vodik je došao u dodir sa zrakom tek kada je napustio sustav za regulaciju tlaka, što znači da se eksplozija zbila izvan reaktorskog spremnika, ali oko i unutar reaktorske zgrade. U eksploziji su oštećeni dijelovi reaktorske zgrade, ali ne i zaštitni spremnici. Iako neočekivana, ova eksplozija nije predstavljala opasnost za sustav zaštite reaktora. Kada je temperatura cijevi s gorivom prešla 1200 °C, došlo je do oštećenja malog dijela nuklearnog goriva. Sami je nuklearni materijal ostao netaknut. Međutim, zaštitna barijera od cirkonija počela se urušavati, zbog čega su neki radioaktivni produkti fisije (cezij, jod itd.) počeli reagirati s vodom i vodenom parom.

Zbog ograničene mogućnosti hlađenja, kao i sve većeg gubitka reaktorske vode, inženjeri su odlučili u reaktor uvesti morsku vodu pomiješanu s bornom kiselinom za uklanjanje viška neutrona. Borna kiselina sprečava spontani početak rada reaktora, a može uhvatiti i zaostale atome joda u reaktorskoj vodi, iako to joj nije primarna namjena. Voda u sustavu hlađenja je pročišćena destilirana voda. Pošto morska voda uzrokuje koroziju, nakon smirivanja situacije metalni su se dijelovi morati pomno očistiti. Ubacivanjem morske vode napokon se smanjila temperatura u reaktoru. Pošto je reaktor ugašen već neko vrijeme smanjila se i ostatna toplina. Stabiliziran je tlak, pa nije više bilo potrebe za otpuštanjem viška pare. [6]

Izvori

  1. [1] "Report Finds Japan Underestimated Tsunami Danger" Martin Fackler, New York Times, 2011.
  2. [2] Arhivirano 2012-10-12 na Wayback Machine-u "Tipovi reaktora", Nuklearna Elektrarna Krško, www.nek.si/hr, 2012.
  3. [3] Arhivirano 2012-01-11 na Wayback Machine-u "Nuklearni reaktori/elektrane", www.nemis.zpf.fer.hr, 2012.
  4. [4] Arhivirano 2014-03-08 na Wayback Machine-u "Nuklearni reaktori", Frane Martinić, dipl. ing., pom. str. I. klase, upravitelj stroja, www.upss.hr, 2012.
  5. [5] "Sve što ste htjeli znati o nuklearnoj opasnosti u Japanu, a niste imali gdje pročitati", www.znano.st/materija-i-energija, 2011.
  6. [6][mrtav link] "Vladimir Paar: Uzdrmano je povjerenje u to da su nuklearke sigurne od sila prirode", www.vjesnik.hr, 2011.

Read other articles:

Inherited neurodegenerative disorder Medical conditionHuntington's diseaseOther namesHuntington's choreaAn edited microscopic image of a medium spiny neuron (yellow) with an inclusion body (orange), which occurs as part of the disease process (image width 360 µm)SpecialtyNeurologySymptomsProblems with motor skills, including coordination and gait, mood, and mental abilities[1][2]ComplicationsPneumonia, heart disease, physical injury from falls, suicide[3]Usual on...

 

 

Three-letter air-travel designation for airports and cities For a list of IATA airport codes, see Lists of airports by IATA and ICAO code. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: IATA airport code – news · newspapers · books · scholar · JSTOR (February 2021) (Learn how and when to remove this templat...

 

 

Pembaptisan dengan api dari pemimpin Pemercaya Lama Avvakum pada tahun 1682 Membakar tiga penyihir di Baden Switzerland. Eksekusi dengan pembakaran (Inggris: death by burning) adalah metode eksekusi dengan cara membakar hidup-hidup atau memberikan paparan panas yang ekstrim terhadap seseorang. Dalam sejarahnya, metode hukuman ini telah digunakan sebagai bentuk hukuman mati. Banyak masyarakat di dunia yang menggunakannya sebagai hukuman dan ancaman terhadap kejahatan seperti pengkhianatan,...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

 

Artikel ini bukan mengenai hari libur. Wisatawan yang memenuhi pantai di Broadstairs, Kent, UK Liburan atau berlibur https://msha.ke/liburan[pranala nonaktif permanen] adalah waktu bagi seseorang atau sekelompok orang untuk melakukan cuti singkat dari pekerjaan dan tugas tertentu atau tidak bersekolah untuk periode tertentu, dengan tujuan relaksasi, melakukan perjalanan rekreatif atau berwisata,atau berkumpul bersama keluarga atau melakukan hobi. Orang sering melakukan liburan pada wa...

Species of owl Barred owl Conservation status Least Concern  (IUCN 3.1)[1] CITES Appendix II (CITES)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Strigiformes Family: Strigidae Genus: Strix Species: S. varia Binomial name Strix variaBarton, 1799 Subspecies S. v. georgica S. v. helveola S. v. varia Synonyms Syrnium varium Barred owl, Yellowstone National Park The barred owl (Strix varia), also known as the n...

 

 

When a sales representative meets with a potential client for the purpose of transacting a sale Marketing Marketing Marketing management Key concepts Distribution Pricing Retail Service Activation Brand licensing Brand management Co-creation Consumer behaviour Consumer culture Dominance Effectiveness Ethics Promotion Segmentation Strategy Account-based marketing Digital marketing Product marketing Social marketing Influencer marketing Attribution Annoyance factor Horizontal integration Vertic...

 

 

F.140 Super Goliath F.140 Super Goliath circa 1925 Role Heavy night bomberType of aircraft Manufacturer Farman First flight April 1924 Retired 1930 Primary user l'Armeé de l'Air Number built 9 The Farman F.140 Super Goliath was a very large, four engine biplane night bomber, designed in France in the mid-1920s. Nine flew with the French Air Force until concerns about structural weakness grounded them in 1930. The prototype set several world records for altitude reached with heavy usefu...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

 

Event at the 1988 Summer Olympics Athletics at the1988 Summer OlympicsTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mwomen5000 mmen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemen4 × 100 m relaymenwomen4 × 400 m relaymenwomenRoad eventsMarathonmenwomen20 km walkmen50 km walkmenField eventsLong jumpmenwomenTriple jumpmenHigh jumpmenwomenPole vaultmenShot putmenwomenDiscus throwmenwomenJavelin throwmenwomenHammer...

 

 

American college football season 2017 South Alabama Jaguars footballConferenceSun Belt ConferenceRecord4–8 (3–5 Sun Belt)Head coachJoey Jones (9th season)Offensive coordinatorBryant Vincent (fired after 3 games) Richard Owens (3rd season)Defensive coordinatorKane Wommack (2nd season)Home stadiumLadd–Peebles StadiumSeasons← 20162018 → 2017 Sun Belt Conference football standings vte Conf Overall Team   W   L     W   L ...

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

 

Untuk fisikawan Giuseppe Mercalli, lihat Giuseppe Mercalli. Skala Mercalli adalah satuan untuk mengukur kekuatan gempa bumi. Satuan ini diciptakan oleh seorang vulkanolog asal Italia yang bernama Giuseppe Mercalli pada tahun 1902. Skala Mercalli terbagi menjadi 12 tingkatan berdasarkan informasi dari orang-orang yang selamat dari gempa bumi dan juga dengan melihat serta membandingkan tingkat kerusakan akibat gempa bumi tersebut. Oleh karena itu, skala Mercalli sangat subjektif dan kurang obje...

 

 

TwinsInformasi latar belakangAsal Hong KongGenreCantopopTahun aktif2001–sekarangLabelEmperor Entertainment GroupSitus webSitus di Twins pada EEGAnggotaCharlene Choi (蔡卓妍)Gillian Chung (鍾欣桐) Twins adalah duo penyanyi wanita Hong Kong yang didirikan tahun 2001 oleh Emperor Entertainment Group. Twins terdiri dari Charlene Choi (蔡卓妍) dan Gillian Chung (鍾欣桐). Mereka merupakan penyanyi populer di Hong Kong, Tiongkok, Jepang, Singapura dan Thailand. Diskografi Tanggal rilis...

Class III shortline railroad in Missouri This article is about the Missouri & Northern Arkansas Railroad (1992). It is not to be confused with the Missouri & North Arkansas Railroad (1906-1946). Missouri & Northern Arkansas RailroadMNA 3363, an EMD SD40-2 idling at Pearl Yard in Carthage, Missouri.OverviewHeadquartersCarthage, MissouriReporting markMNALocaleArkansas, Kansas, MissouriDates of operation1992–presentTechnicalTrack gauge4 ft 8+1⁄2 in (1,435&#...

 

 

Elections to the Labour Party's Shadow Cabinet (more formally, its Parliamentary Committee) occurred in November 1972. In addition to the 12 members elected, the Leader (Harold Wilson), Deputy Leader (Edward Short), Labour Chief Whip (Bob Mellish), Chairman of the Parliamentary Labour Party (Douglas Houghton), Labour Leader in the House of Lords (Baron Shackleton), and Labour Chief Whip in the Lords (Baron Beswick) were automatically members. The Labour Lords elected one further member, Baro...

 

 

Canadian government assembly First Legislature, 1906, Saskatchewan. Edgar C. Rossie, British Library. The 1st Legislative Assembly of Saskatchewan was elected in the Saskatchewan general election held in December 1905, the first general election for the new province. The assembly sat from March 29, 1906, to July 20, 1908.[1] The Liberal Party led by Walter Scott formed the government.[2] The Provincial Rights Party led by Frederick Haultain formed the official opposition.[...

Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Asy-Syaukani – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) MuhammadImam SyaukaniSampul depan bu...

 

 

Viladecans    州  カタルーニャ州 県  バルセロナ県 コマルカ バッシュ・リュブラガート 面積 20.4 km² 標高 18m 人口 65,993 人 (2017年) 人口密度 3,234.95 人/km² Viladecans スペイン内ビラダカンスの位置 Viladecans バルセロナ県内ビラダカンスの位置 北緯41度18分57秒 東経02度01分11秒 / 北緯41.31583度 東経2.01972度 / 41.31583; 2.01972座標: 北緯41度18分57秒 �...