Характеризация запрещёнными графами — это метод описания семейства графов или гиперграфов путём указания подструктур, которым запрещено появляться внутри любого графа в семействе.
В теории графов многие важные семейства графов могут быть описаны конечным числом индивидуальных графов, которые не принадлежат семейству, и исключаются все графы из семейства, которые содержат любой из этих запрещённых графов в качестве (порождённого) подграфа или минора.
В качестве прототипа явления служит теорема Понтрягина — Куратовского, которая утверждает, что граф планарен (граф, который можно нарисовать на плоскости без пересечений) тогда и только тогда, когда граф не содержит любой из двух запрещённых подграфов, полный графK5 и полный двудольный графK3,3.
В различных семействах природа запрещённого меняется. В общем случае структура G является членом семейства тогда и только тогда, когда запрещённая структура не содержится в G. Запрещённая подструктура может быть одной из:
подграфы, меньшие графы, получаемые из подмножества вершин и рёбер большего графа,
порождённые подграфы, меньшие графы, получаемые выбором подмножества вершин и включением всех рёбер, у которых обе вершины принадлежат этому подмножеству,
гомеоморфных подграфов (называемых также топологическими минорами), меньших графов, получаемых из подграфов заменой путей с вершинами степени два на рёбра,
Множество структур, которым запрещено принадлежать данному семейству графов, можно также назвать препятствующим множеством семейства.
Характеризация запрещёнными графами может быть использована в алгоритмах для проверки, принадлежит ли граф данному семейству. Во многих случаях можно проверить за полиномиальное время, содержит ли данный граф какой-либо член препятствующего множества, а потому, принадлежит ли граф семейству, определяемому препятствующим множеством.
Чтобы семейство имело характеризацию запрещёнными графами с определённым типом подструктур, семейство должно быть замкнуто по подструктурам.
То есть любая подструктура (данного типа) графа в семействе должна быть другим графом в семействе. Эквивалентно, если граф не входит в семейство, все большие графы, содержащие его в качестве подструктуры, должны быть также исключены из семейства. Если это верно, всегда существует препятствующее множество (множество графов, не принадлежащих семейству, но все меньшие подструктуры принадлежат семейству). Однако, при некоторых представлениях, что понимать под подструктурой, это препятствующее множество может оказаться бесконечным. Теорема Робертсона – Сеймура доказывает, что в определённых случаях миноров графа, семейство, замкнутое по минорам, всегда имеет конечное препятствующее множество.
Список характеризаций запрещёнными графами (для графов и гиперграфов)
Это неполный список, который, возможно, никогда не будет удовлетворять определённым стандартам полноты. Вы можете дополнить его из авторитетных источников.
↑Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Andreas Gleißner, Kathrin Hanauer, Daniel Neuwirth, Josef Reislhuber. 21st International Symposium, GD 2013, Bordeaux, France, September 23-25, 2013, Revised Selected Papers / Stephen Wismath, Alexander Wolff,. — 2013. — Т. 8242. — С. 107–118. — (Lecture Notes in Computer Science). — doi:10.1007/978-3-319-03841-4_10..
↑Neil Robertson, P. D. Seymour, Robin Thomas. Linkless embeddings of graphs in 3-space // Bulletin of the American Mathematical Society. — 1993. — Т. 28, вып. 1. — С. 84–89. — doi:10.1090/S0273-0979-1993-00335-5. — arXiv:math/9301216..
↑Toshinobu Kashiwabara. Graph Theory and Algorithms, 17th Symposium of Research Institute of Electric Communication, Tohoku University, Sendai, Japan, October 24-25, 1980, Proceedings / Nobuji Saito, Takao Nishizeki. — Springer-Verlag, 1981. — Т. 108. — С. 171–181. — (Lecture Notes in Computer Science). — doi:10.1007/3-540-10704-5\_15..
↑L. W. Beineke. Beiträge zur Graphentheorie / H. Sachs, H.-J. Voss, H.-J. Walter. — Leipzig: Teubner, 1968. — С. 17–33..
↑Ehab El-Mallah, Charles Colbourn. The complexity of some edge deletion problems // IEEE Transactions on Circuits and Systems. — 1988. — Т. 35, вып. 3. — С. 354–362. — doi:10.1109/31.1748..
↑K. Takamizawa, Takao Nishizeki, Nobuji Saito. Combinatorial problems on series-parallel graphs // Discrete Applied Mathematics. — 1981. — Т. 3, вып. 1. — С. 75–76. — doi:10.1016/0166-218X(81)90031-7..
↑Benson L. Joeris, Min Chih Lin, Ross M. McConnell, Jeremy P. Spinrad, Jayme L. Szwarcfiter. Linear-Time Recognition of Helly Circular-Arc Models and Graphs // Algorithmica. — 2009. — Т. 59, вып. 2. — С. 215–239. — doi:10.1007/s00453-009-9304-5.
↑Stéphane Földes, Peter L. Peter Hammer. Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977). — Winnipeg: Utilitas Math., 1977a. — Т. XIX. — С. 311–315. — (Congressus Numerantium).
↑Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth // Theoretical Computer Science. — 1998. — Т. 209, вып. 1–2. — С. 1–45. — doi:10.1016/S0304-3975(97)00228-4..
↑Hans L. Bodlaender, Dimitrios M. Thilikos. Graphs with branchwidth at most three // Journal of Algorithms. — 1999. — Т. 32, вып. 2. — С. 167–194. — doi:10.1006/jagm.1999.1011..
↑D. Seinsche. On a property of the class of n-colorable graphs // Journal of Combinatorial Theory, Series B. — 1974. — Т. 16, вып. 2. — С. 191–193. — doi:10.1016/0095-8956(74)90063-X.
↑ 12Martin Charles Golumbic. Trivially perfect graphs // Discrete Mathematics. — 1978. — Т. 24, вып. 1. — С. 105–107. — doi:10.1016/0012-365X(78)90178-4.
↑Ranjan N. Naik, S. B. Rao, S. S. Shrikhande, N. M. Singhi. Intersection graphs of k-uniform hypergraphs // European J. Combinatorics. — 1982. — Т. 3. — С. 159–172. — doi:10.1016/s0195-6698(82)80029-2.