Существует две эквивалентные формы уравнения синус-Гордона. В (вещественных) координатах пространство-время, обозначенных (x, t), уравнение имеет вид
При переходе к координатам светового конуса (u, v), близким к асимптотическим координатам, где
уравнение принимает вид
Это исходная форма уравнения синус-Гордона, в которой оно было рассмотрено в XIX веке в связи с изучением поверхностей постоянной гауссовой кривизныK = −1, также называемых псевдосферами. Выберем систему координат, в которой координатная сетка u = const, v = const задаётся асимптотическими линиями, параметризованными длиной дуги. Первая квадратичная форма данной поверхности в таких координатах примет специальный вид:
где φ — угол между асимптотическими линиями, и для второй квадратичной формы, L = N = 0. Тогда уравнение Петерсона ― Кодацци, отражающее условие совместимости между первой и второй квадратичными формами, приводит к уравнению синус-Гордона. Изучение этого уравнения и соответствующих преобразований псевдосфер в XIX веке Бьянки и Бэклундом привели к открытию преобразований Бэклунда.
Название «уравнение синус-Гордона» — каламбур на тему хорошо известного в физике уравнения Клейна — Гордона:
в данном лагранжиане, он может быть записан как лагранжиан Клейна — Гордона плюс члены более высокого порядка
Солитоны
Интересное свойство уравнения синус-Гордона — существование солитонных и многосолитонных решений.
Односолитонное решение
Уравнение синус-Гордона имеет следующие односолитонные решения:
где
Односолитонное решение, для которого мы выбрали положительный корень для , называется кинк и представляет виток по переменной , который переводит одно решение в смежное . Состояния известны как вакуумные, так как они являются постоянными решениями нулевой энергии. Односолитонное решение, в котором мы взяли отрицательный корень для , называется антикинк. Форма односолитонных решений может быть получена посредством применения преобразования Бэклунда к тривиальному (постоянному вакуумному) решению и интегрированию получившихся дифференциальных уравнений первого порядка:
Односолитонные решения могут быть визуализированы посредством синус-гордоновской модели упругой ленты[1]. Примем виток упругой ленты по часовой стрелке (левовинтовой) за кинк с топологическим зарядом . Альтернативный виток против часовой стрелки (правовинтовой) с топологическим зарядом будет антикинком.
Двухсолитонные решения
Многосолитонные решения могут быть получены посредством непрерывного применения преобразования Бэклунда к односолитонному решению, как предписывается решёткой Бьянки, соответствующей результатам преобразования[2]. 2-солитонные решения уравнения синус-Гордона проявляют некоторые характерные свойства солитонов. Бегущие синус-гордоновские кинки и/или антикинки проходят сквозь друг друга как полностью проницаемые, и единственный наблюдаемый эффект — фазовый сдвиг. Так как сталкивающиеся солитоны сохраняют свою скорость и форму, такой вид взаимодействия называется упругим столкновением.
Другие интересные двухсолитонные решения возникают из возможности спаренного кинк-антикинкового поведения, известного как бризер. Известно три типа бризеров: стоячий бризер, бегущий высокоамплитудный бризер и бегущий малоамплитудный бризер[3].
Трёхсолитонные решения
Трёхсолитонные столкновения между бегущим кинком и стоячим бризером или бегущим антикинком и стоячим бризером приводят к фазовому сдвигу стоячего бризера. В процессе столкновения между движущимся кинком и стоячим бризером сдвиг последнего даётся соотношением
где — скорость кинка, а — частота бризера[3]. Если координата стоячего бризера до столкновения — , то после столкновения она станет .
Другое тесно связанное с уравнением синус-Гордона — это эллиптическое уравнение синус-Гордона:
где — функция переменных x и y. Это уже не солитонное уравнение, но оно имеет много похожих свойств, так как оно связано с уравнением синус-Гордона аналитическим продолжением (или поворотом Вика) y = it.
Эллиптическое уравнение шинус-Гордона может быть определено аналогичным образом.
Обобщение даётся теорией поля Тоды.
Квантовая версия
В квантовой теории поля модель синус-Гордона содержит параметр, который может быть отождествлён с постоянной Планка. Спектр частиц состоит из солитона, антисолитона и конечного (возможно, нулевого) числа бризеров. Число бризеров зависит от данного параметра. Множественные рождения частиц сокращаются на уравнениях движения.
Также рассматривают модель синус-Гордона на круге, отрезке прямой или луче. Возможно подобрать граничные условия, которые сохраняют интегрируемость данной модели. На луче спектр частиц содержит пограничные состояния кроме солитонов и бризеров.
Суперсимметричная модель синуса-Гордона
Суперсимметричный аналог модели синус-Гордона также существует. С таким же успехом для него могут быть найдены сохраняющие интегрируемость граничные условия.
Примечания
↑Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H. C. Solitons and Nonlinear Wave Equations. Academic Press, London, 1982.
↑Rogers C., Schief W. K. Bäcklund and Darboux Transformations. New York: Cambridge University Press, 2002.
↑Faddeev L. D., Korepin V. E. Quantum theory of solitons (англ.) // Physics Reports. — 1978. — Vol. 42, iss. 1. — P. 1—87. — doi:10.1016/0370-1573(78)90058-3.