Паралле́льный перено́с, иногда трансляция[1] (от лат.translatio — перенос, перемещение) ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние.
Параллельный перенос ― перемещение всех точек пространства в одном и том же направлении на одно и то же расстояние.
Если ― первоначальное положение, а ― смещённое в результате переноса положение точки, то вектор ― один и тот же для всех пар точек, соответствующих друг другу в данном преобразовании.
Параллельный перенос на вектор обозначается как (от лат. translatio - перенос, перемещение)
Координатное представление
На плоскости параллельный перенос выражается аналитически в прямоугольной системе координат при помощи
где вектор .
Свойства
Две различные точки и их образы, полученные параллельным переносом, являются вершинами параллелограмма, в котором отрезок, соединяющий две начальные точки, образует одну сторону, а отрезок, соединяющий два их образа — противоположную ей сторону.
У параллельного переноса нет неподвижных точек (если только это не тождественное преобразование, либо если прямая или плоскость не параллельны вектору параллельного переноса (т.к. именно он определяет направление переноса[2])).
↑Паралле́льный перено́с и трансляция ― полные синонимы в математике и физике, вторая форма термина особенно часто употребляется для образования прилагательного, например трансляционная симметрия), также, традиционно, ей отдается почти исключительное предпочтение в некоторых областях, таких, как кристаллография.