Жёлтые Копани

Хутор
Жёлтые Копани
46°24′19″ с. ш. 38°52′24″ в. д.HGЯO
Страна  Россия
Субъект Федерации Краснодарский край
Муниципальный район Староминский
Сельское поселение Староминское
История и география
Высота центра 29 м
Часовой пояс UTC+3:00
Население
Население 275[1] человек (2021)
Цифровые идентификаторы
Телефонный код +7 86153
Почтовый индекс 353767
Код ОКАТО 03247813002
Код ОКТМО 03647413106
Показать/скрыть карты
Жёлтые Копани (Россия)
Точка
Жёлтые Копани
Москва
Жёлтые Копани (Краснодарский край)
Краснодар
Староминская
Точка
Жёлтые Копани

Жёлтые Копани — хутор в Староминском районе Краснодарского края.

Входит в состав Староминского сельского поселения.

География

Имеется железнодорожный остановочный пункт Жёлтые Копани[2].

Улицы

  • Южная
  • Северная

История

До 1900 года на месте хутора Жёлтые Копани (в 33 км от станицы Староминской) располагалась усадьба пана Давиденко. Первыми, ещё до революции, здесь построили хаты семьи Гагай, Яценко, Шепитько и Пыдык. Степан Тимофеевич Гагай имел дом в станице, два хуторских хозяйства, лавку, паровую молотилку, ветряк и мельницу. Крепким было также и хозяйство Платона Григорьевича Яценко.

Потом приехали Пятаки, Луговские, ещё три семьи Гагай — родственники первых. После революции в хуторе насчитывалось уже 15 дворов, а в 1919 году здесь была установлена Советская власть.

Память погибших в Великой Отечественной войне земляков увековечена монументом, который строили дружно всем хутором и открыли в начале 1980-х годов. На памятнике начертаны 70 фамилий погибших хуторян.

Население

Численность населения
2002[3]2010[4]2021[1]
336290275

Примечания

Ссылки

Read other articles:

For the Cuban Olympic weightlifter, see Juan Benavides (weightlifter). Spanish swimmer In this Spanish name, the first or paternal surname is Benavides and the second or maternal family name is Hermosilla. Juan BenavidesPersonal informationFull nameJuan Benavides HermosillaNational team SpainBorn (1975-06-25) June 25, 1975 (age 48)Madrid, SpainSportSportSwimming Juan Benavides Hermosilla (born June 25, 1975) is a former freestyle swimmer from Spain, who competed at...

 

Untuk kegunaan lain, lihat Sukiyaki (disambiguasi). Sukiyaki Sukiyaki (すき焼き, スキヤキcode: ja is deprecated ) adalah irisan tipis daging sapi, sayur-sayuran, dan tahu di dalam panci besi yang dimasak di atas meja makan dengan cara direbus. Sukiyaki dimakan dengan mencelup irisan daging ke dalam kocokan telur ayam. Sayur-sayuran untuk Sukiyaki misalnya bawang bombay, daun bawang, sawi putih, shungiku (nama daun dari pohon keluarga seruni), jamur shiitake, dan jamur enoki. Sebagai p...

 

Abugida NāgarīThe word Nāgarī in the Nāgarī script.Script type Abugida Time period7th century CELanguages Sanskrit Prakrit Related scriptsParent systemsProto-Sinaitic alphabetPhoenician alphabetAramaic alphabetBrahmiGuptaSiddhaṃ[1][2][3][4]NāgarīChild systems Devanagari Kaithi Nandinagari Gujarati Modi Sister systemsBengali-Assamese script, Odia script,[2] Nepalese This article contains phonetic transcriptions in the International Phoneti...

GusungKoordinat6°6′46.896″LS,120°25′38.132″BTNegaraIndonesiaGugus kepulauanSelayarProvinsiSulawesi SelatanKabupatenKepulauan Selayar Pulau Gusung (Makassar: ᨁᨘᨔᨘ, translit. Gusung, har. 'pulau, gundukan pasir') adalah salah satu pulau yang berada di gugusan Kepulauan Selayar dan secara administratif masuk pada wilayah Desa Bontolebang, Kecamatan Bontoharu, Kabupaten Kepulauan Selayar, Sulawesi Selatan, Indonesia. Secara astronomis, pulau ini terlet...

 

Gwen StefaniStefani saat tampil bersama No Doubt pada tahun 2015LahirGwen Renée Stefani3 Oktober 1969 (umur 54)Fullerton, California, A.S.Nama lainGwen Shelton[1]AlmamaterUniversitas Negeri California, FullertonPekerjaanPenyanyipenulis laguperancang busanapemeranTahun aktif1986–sekarangOrganisasiL.A.M.B. Harajuku Lovers GX by Gwen StefaniKekayaan bersih$150 jutaSuami/istriGavin Rossdale ​ ​(m. 2002; c. 2016)​...

 

1871–1872 novel by George Eliot For other uses, see Middlemarch (disambiguation). Middlemarch, A Study of Provincial Life Title page of the first edition, 1871–1872AuthorGeorge Eliot (Mary Ann Evans)Working titleMiss BrookeCountryUnited KingdomLanguageEnglishGenreNovelSet inEnglish Midlands and briefly Rome, September 1829 – May 1832Published1871–1872PublisherWilliam Blackwood and SonsMedia typePrintDewey Decimal823.8Preceded byFelix Holt, the Radical Followed...

Chemical compound MytatrienediolClinical dataOther namesSC-6924; Manvene; Anvene; 3-Methoxy-16α-methylestra-1,3,5(10)-triene-16β,17β-diol; 16α-Methylestriol 3-methyl ether; 16β-Hydroxy-16α-methylestradiol 3-methyl etherRoutes ofadministrationBy mouthDrug classEstrogen; Estrogen etherIdentifiers IUPAC name (8R,9S,13S,14S,16S,17R)-3-methoxy-13,16-dimethyl-7,8,9,11,12,14,15,17-octahydro-6H-cyclopenta[a]phenanthrene-16,17-diol CAS Number5108-94-1PubChem CID5282364ChemSpider4445527UNII1G3TKH...

 

Halaman ini berisi artikel tentang agama Jawanik yang bersifat monoteistik. Untuk agama Jawanik yang bersifat non-monoteistik, lihat Kejawen. Kapitayanꦏꦥꦶꦠꦪꦤ꧀JenisAgama asli Nusantara (Suku Jawa)TeologiMonoteismeBadanpemerintahanMajelis Nasional Agama JawaWilayahJawa Tengah & Jawa TimurBahasa Bahasa Jawa Kuno (biasa digunakan pada ritual keagamaan) Bahasa Jawa (terutama Bahasa Bagongan) Kantor pusatJawa TengahPengakuanDiakui sejak 2017, sebagai Kepercayaan Terhadap Tuhan Yan...

 

Plectocomia Plectocomia elongata Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Monokotil (tanpa takson): Commelinids Ordo: Arecales Famili: Arecaceae Subfamili: Calamoideae Tribus: Calameae Genus: PlectocomiaMart. & Blume Spesies Lihat teks Plectocomia adalah genus tumbuhan berbunga dalam keluarga Arecaceae yang berasal dari Cina, Pegunungan Himalaya, dan Asia Tenggara.[1] Tumbuhan dalam genus bers...

1986 film by John Badham Short Circuit 1 redirects here. For other uses, see Short circuit (disambiguation). Short CircuitTheatrical release posterDirected byJohn BadhamWritten by S. S. Wilson Brent Maddock Produced by David Foster Lawrence Turman Starring Ally Sheedy Steve Guttenberg Fisher Stevens Austin Pendleton G. W. Bailey CinematographyNick McLeanEdited byFrank MorrissMusic byDavid ShireProductioncompanies Producers Sales Organization Turman-Foster Company Distributed byTri-Star Pictur...

 

This template does not require a rating on Wikipedia's content assessment scale.It is of interest to the following WikiProjects:Environment Environment portalThis environment-related template is part of the WikiProject Environment to improve Wikipedia's coverage of the environment. The aim is to write neutral and well-referenced articles on environment-related topics, as well as to ensure that environment articles are properly categorized. Read Wikipedia:Contributing FAQ and leave any message...

 

Any experiment with two possible random outcomes Part of a series on statisticsProbability theory Probability Axioms Determinism System Indeterminism Randomness Probability space Sample space Event Collectively exhaustive events Elementary event Mutual exclusivity Outcome Singleton Experiment Bernoulli trial Probability distribution Bernoulli distribution Binomial distribution Exponential distribution Normal distribution Pareto distribution Poisson distribution Probability measure Random vari...

Political party in the USA Working Class Party ChairmanLarry ChristensonFounded2016; 8 years ago (2016)HeadquartersDetroit, MichiganIdeologyProgressivism SocialismPolitical positionLeft-wingInternational affiliationInternational League of People's StruggleColors Michigan House of Representatives0 / 110 Michigan Senate0 / 38 Statewide Executive Offices0 / 4 U.S. House of Representatives0 / 13 U.S. Senate0 / 2 Websiteworkingclassfight.comPolitics of MichiganElections...

 

2020 agreement between Israel and Morocco Israel–Morocco normalization agreement22 December 2020 Joint Declaration among the Kingdom of Morocco, State of Israel, and United States of AmericaTypeNormalization agreementSignedDecember 22, 2020LocationRabat, MoroccoMediators United StatesParties  Israel  Morocco The Israel–Morocco normalization agreement is an agreement announced by the United States government on December 10, 2020, in which Israel and Morocco agreed to begin n...

 

Cummins, Inc. Тип Публічна компаніяОрганізаційно-правова форма господарювання акціонерне товариствоГалузь машинобудівна промисловість[d]Лістинг на біржі NYSE: CMIЗасновано 1919[1]Засновник(и) Clessie CumminsdШтаб-квартира КолумбусКлючові особи Том ЛінбаргерПродукція двигунQ130...

WatchESPN Información generalDominio http://www.espn.com/watch/Tipo Retransmisiones de eventos deportivosEn español SíEstado actual Desaparecido (territorios seleccionados); funcionalidad transferida a ESPN.com, aplicación de ESPN, ESPN+ y ESPN PlayerGestiónPropietario ESPNLanzamiento 25 de octubre de 2010 (13 años)[editar datos en Wikidata] WatchESPN era una marca del sitio web de televisión por Internet y la aplicación móvil operada por ESPN Inc, una empresa conjunta...

 

French noblewoman (1676–1718) Louise de MaisonblancheBaroness of La QueueFull nameLouise de MaisonblancheKnown forIllegitimate child of Louis XIV of FranceBorn(1676-06-17)17 June 1676Paris, Kingdom of FranceDied12 September 1718(1718-09-12) (aged 42)La Queue-les-Yvelines, Kingdom of FranceSpouse(s)Bernard de Prez, Baron of La QueueIssue11FatherLouis XIVMotherClaude de Vin des Œillets Louise de Maisonblanche (17 June 1676 – 12 September 1718), was a French noblewoman, the il...

 

Ritratto di Lady Sidney con i suoi bambini Barbara Gamage (Castello di Coity, 1562 – Penshurst, maggio 1621) è stata una nobile ereditiera gallese. Biografia Era figlia di John Gamage, un proprietario del castello di Coity, nel Glamorganshire, e di Gwenllian Powell[1]. Quando suo padre morì nel 1584, Barbara venne affidata alle cure dello zio Sir Edward Stradling e andò a vivere a Londra. Avendo ella ereditato tutte le terre del padre, si instaurò una forte competizione tra i ra...

Graph with sign-labeled edges There are eight ways that signs can be assigned to the sides of a triangle. An odd number of negative signs makes an unbalanced triangle, according to Fritz Heider's theory. In the area of graph theory in mathematics, a signed graph is a graph in which each edge has a positive or negative sign. A signed graph is balanced if the product of edge signs around every cycle is positive. The name signed graph and the notion of balance appeared first in a mathematical pa...

 

Languages of SingaporeA construction danger sign in Singapore's four official languages: English, Chinese (Mandarin), Malay and TamilOfficialEnglish, Chinese, Malay, TamilNationalMalayMainEnglish (de facto) Malay (de jure)VernacularSingapore English (formal), Singlish (informal)MinorityCantonese, Hokkien, Hainanese, Hakka, Teochew, Indonesian, Javanese, Japanese, Korean, Punjabi, MalayalamImmigrantArabic, Farsi, Armenian, Bengali, Hebrew, Hindi, Telugu, Thai, Vietnamese, YiddishForeignDutch,...