Длинная линия

Длинная линия — модель линии передачи, продольный размер (длина) которой превышает длину волны, распространяющейся в ней (либо сравнима с длиной волны), а поперечные размеры (например, расстояние между проводниками, образующими линию) значительно меньше длины волны.

С точки зрения теории электрических цепей длинная линия относится к четырёхполюсникам. Характерной особенностью длинной линии является проявление интерференции двух волн, распространяющихся навстречу друг другу. Одна из этих волн создается подключенным ко входу линии генератором электромагнитных колебаний и называется падающей. Другая волна называется отражённой и возникает из-за частичного отражения падающей волны от нагрузки, подключенной к выходу (противоположному генератору концу) линии. Всё разнообразие колебательных и волновых процессов, происходящих в длинной линии, определяется соотношениями амплитуд и фаз падающей и отраженной волн. Анализ процессов упрощается, если длинная линия является регулярной, то есть такой, у которой в продольном направлении неизменны поперечное сечение и электромагнитные свойства (εr, μr, σ) заполняющих сред[1].

Дифференциальные уравнения длинной линии

Двухпроводная длинная линия
ZН = RН + iXН — комплексное сопротивление нагрузки;
z — продольная координата линии, отсчитываемая от места подключения нагрузки.

Первичные параметры

Из электродинамики известно, что линия передачи может быть охарактеризована её погонными параметрами:

  • R1 — погонное сопротивление металла проводов, Ом/м;
  • G1 — паразитная, параллельная(источник термина ) погонная(продольная, аддитивная) проводимость диэлектрика линии,1/Ом·м или См/м; ,- погонная вдоль линии, ортогонально токам утечки через диэлектрик, в противовес g[Cм·м] - проводимости погонной,приведённой к единице длины паразитного тока, текущего через диэлектрик линии(поперечно-погонной проводимости изолятора линии)!
  • L1 — погонная индуктивность Гн/м;
  • C1 — погонная ёмкость Ф/м;

Погонные сопротивление и проводимость G1 зависят от проводимости материала проводов и качества диэлектрика, окружающего эти провода, соответственно. Согласно закону Джоуля — Ленца, чем меньше тепловые потери в металле проводов и в диэлектрике, тем меньше погонное сопротивление металла R1 и меньше погонная проводимость диэлектрика G1. (Уменьшение активных потерь в диэлектрике означает увеличение его сопротивления, так как активные потери в диэлектрике — это токи утечки. Для модели используется обратная величина — погонная проводимость G1.)

Погонные индуктивность L1 и ёмкость C1 определяются формой и размерами поперечного сечения проводов, а также расстоянием между ними.

А и — погонные комплексные сопротивление и проводимость линии, зависящие от частоты .

Выделим из линии элементарный участок бесконечно малой длины dz и рассмотрим его эквивалентную схему.

Эквивалентная схема участка длинной линии

Эквивалентная схема участка длинной линии. Стрелками обозначены направления отсчета напряжения U и тока I в линии; dU и dI — приращения напряжения и тока в линии на элементе длины dz

Значения параметров схемы определяются соотношениями:

(1)

Используя эквивалентную схему, запишем выражения для приращений напряжения и тока:

Подставляя сюда значения параметров схемы из (1), получаем:

Из последних соотношений находим дифференциальные уравнения линии. Эти уравнения определяют связь между током и напряжением в любом сечении линии и называются телеграфными уравнениями длинной линии:

Телеграфные уравнения

(2)

Следствия

Решим телеграфные уравнения относительно напряжения и тока. Для этого продифференцируем их по z:

(3)

При этом учтем условие регулярности линии:

Условие регулярности линии

(4)

Данные соотношения являются математическим определением регулярности длинной линии. Смысл соотношения (4) состоит в неизменности вдоль линии её погонных параметров.

Подставляя в (3) значения производных напряжения и тока из (2), после преобразований получаем:

Однородные волновые уравнения длинной линии

,
(5)

где  — коэффициент распространения волны в линии.

Соотношения (5) называются однородными волновыми уравнениями длинной линии. Их решения известны и могут быть записаны в виде:

,
(6)

где AU, BU и AI, BI — коэффициенты, имеющие единицы измерения напряжения и тока соответственно, смысл которых будет ясен ниже.

Решения волновых уравнений в виде (6) имеют весьма характерный вид: первое слагаемое в этих решениях представляет собой отраженную волну напряжения или тока, распространяющуюся от нагрузки к генератору, второе слагаемое — падающую волну, распространяющуюся от генератора к нагрузке. Таким образом, коэффициенты AU, AI представляют собой комплексные амплитуды падающих волн напряжения и тока соответственно, а коэффициенты BU, BI — комплексные амплитуды отраженных волн напряжения и тока соответственно. Так как часть мощности, передаваемой по линии, может поглощаться в нагрузке, то амплитуды отраженных волн не должны превышать амплитуды падающих:

Направление распространения волн в (6) определяется знаком в показателях степени экспонент: плюс — волна распространяется в отрицательном направлении оси z; минус — в положительном направлении оси z (см. рис. 1). Так, например, для падающих волн напряжения и тока можно записать:

,
(7)

Коэффициент распространения волны в линии γ в общем случае является комплексной величиной и может быть представлен в виде:

,
(8)

где α — коэффициент затухания волны[2] в линии; β — коэффициент фазы[3]. Тогда соотношение (7) можно переписать в виде:

.
(9)

Так как при распространении падающей волны на длину волны в линии λЛ фаза волны изменяется на 2π, то коэффициент фазы можно связать с длиной волны λЛ соотношением

.
(10)

При этом фазовая скорость волны в линии VФ определяется через коэффициент фазы:

.
(11)

Определим коэффициенты A и B, входящие в решения (6) волновых уравнений, через значения напряжения UН и тока IН на нагрузке. Это является оправданным, так как напряжение и ток на нагрузке практически всегда можно измерить с помощью измерительных приборов. Воспользуемся первым из телеграфных уравнений (2) и подставим в него напряжение и ток из (6). Тогда получим:

Сравнив коэффициенты при экспонентах с одинаковыми показателями степеней, получим:

,

(12)

где  — волновое сопротивление линии[4].

Перепишем (6) с учётом (12):

.

(13)

Для определения коэффициентов A и B в этих уравнениях воспользуемся условиями в начале линии z = 0:

.

Тогда из (13) при z = 0 найдем

,

(14)

Подставив полученные значения коэффициентов из (14) в (13), после преобразований получим:

.

(15)

При выводе (15) учтены определения гиперболических синуса и косинуса[5].

Соотношения для напряжения и тока (15) так же, как и (6), являются решениями однородных волновых уравнений. Их отличие состоит в том, что напряжение и ток в линии в соотношении (6) определены через амплитуды падающей и отраженной волн, а в (15) — через напряжение и ток на нагрузке.

Рассмотрим простейший случай, когда напряжение и ток в линии определяются только падающей волной, а отраженная волна отсутствует[6]. Тогда в (6) следует положить BU = 0, BI = 0:

.

Распределение поля падающей волны

Рис.3. Эпюры напряжений падающей волны в длинной линии. а) амплитуда; б) фаза

На рис.3. представлены эпюры изменения амплитуды |U| и фазы φU напряжения вдоль линии. Эпюры изменения амплитуды и фазы тока имеют такой же вид. Из рассмотрения эпюр следует, что при отсутствии в линии потерь (α[2] = 0) амплитуда напряжения в любом сечении линии остается одной и той же. При наличии потерь в линии (α[2] > 0) часть переносимой мощности преобразуется в тепло (нагревание проводов линии и окружающего их диэлектрика). По этой причине амплитуда напряжения падающей волны экспоненциально убывает в направлении распространения.

Фаза напряжения падающей волны φU = β z изменяется по линейному закону и уменьшается по мере удаления от генератора.

Рассмотрим изменение амплитуды и фазы, например, напряжения при наличии падающей и отраженной волн. Для упрощения положим, что потери в линии отсутствуют, то есть α[2] = 0. Тогда напряжение в линии можно представить в виде:

, (16)

где  — комплексный коэффициент отражения по напряжению.

Комплексный коэффициент отражения по напряжению

Характеризует степень согласования линии передачи с нагрузкой. Модуль коэффициента отражения изменяется в пределах:

  • | Г | = 0, если отражения от нагрузки отсутствуют и BU = 0[6];
  • | Г | = 1, если волна полностью отражается от нагрузки, то есть ;

Соотношение (16) представляет собой сумму падающей и отраженной волн.

Рис.4. Векторная диаграмма напряжений в линии с отраженной волной

Отобразим напряжение на комплексной плоскости в виде векторной диаграммы, каждый из векторов которой определяет падающую, отраженную волны и результирующее напряжение (рис. 4). Из диаграммы видно, что существуют такие поперечные сечения линии, в которых падающая и отраженная волны складываются в фазе. Напряжение в этих сечениях достигает максимума, величина которого равна сумме амплитуд падающей и отраженной волн:

.

Кроме того, существуют такие поперечные сечения линии, в которых падающая и отраженная волны складываются в противофазе. При этом напряжение достигает минимума:

.

Если линия нагружена на сопротивление, для которого |Г| = 1, то есть амплитуда падающей и отраженной волн равны |BU| = |AU|, то в этом случае Umax = 2|AU|, а Umin = 0.

Рис.5. Эпюры распределения напряжения вдоль линии с отражённой волной. а) Модуль напряжения; б) фаза напряжения.

Напряжение в такой линии изменяется от нуля до удвоенной амплитуды падающей волны. На рис. 5 представлены эпюры изменения амплитуды и фазы напряжения вдоль линии при наличии отраженной волны.

Коэффициенты бегущей и стоячей волны

По эпюре напряжения судят о степени согласования линии с нагрузкой. Для этого вводятся понятия коэффициента бегущей волны — kБВ и коэффициента стоячей волны kСВ:

(17)
(18)

Эти коэффициенты, судя по определению, изменяются в пределах:

,
.

На практике наиболее часто используется понятие коэффициента стоячей волны, так как современные измерительные приборы (панорамные измерители kСВ) на индикаторных устройствах отображают изменение именно этой величины в определенной полосе частот.

Входное сопротивление длинной линии

Входное сопротивление линии является важной характеристикой, которое определяется в каждом сечении линии как отношение напряжения к току в этом сечении:

(19)

Так как напряжение и ток в линии изменяются от сечения к сечению, то и входное сопротивление линии изменяется относительно её продольной координаты z. При этом говорят о трансформирующих свойствах линии, а саму линию рассматривают как трансформатор сопротивлений. Подробнее свойство линии трансформировать сопротивления будет рассмотрено ниже.

Режимы работы длинной линии

Различают три режима работы линии:

  1. режим бегущей волны;[7]
  2. режим стоячей волны;[7]
  3. режим смешанных волн.

Режим бегущей волны

Режим бегущей волны характеризуется наличием только падающей волны, распространяющейся от генератора к нагрузке. Отраженная волна отсутствует. Мощность, переносимая падающей волной, полностью выделяется в нагрузке. В этом режиме BU = 0, Г | = 0, kсв = kбв = 1[7].

Режим стоячей волны

Режим стоячей волны характеризуется тем, что амплитуда отраженной волны равна амплитуде падающей BU = AU то есть энергия падающей волны полностью отражается от нагрузки и возвращается обратно в генератор. В этом режиме, Г | = 1, kсв = , kбв = 0[7].

Режим смешанных волн

В режиме смешанных волн амплитуда отраженной волны удовлетворяет условию 0 < BU < AU то есть часть мощности падающей волны теряется в нагрузке, а остальная часть в виде отраженной волны возвращается обратно в генератор. При этом 0  < | Г | < 1, 1 < kсв < , 0 < kбв < 1

Линия без потерь

В линии без потерь погонные параметры R1 = 0 и G1 = 0. Поэтому для коэффициента распространения γ и волнового сопротивления W получим:

;
.
(20)

С учётом этого выражения для напряжения и тока (15) примут вид:

(21)

При выводе этих соотношений учтены особенности[8] гиперболических функций[5].

Рассмотрим конкретные примеры работы линии без потерь на простейшие нагрузки.

Разомкнутая линия

Рис.6. Эпюры напряжения, тока и входного сопротивления в открытой (разомкнутой) линии

В этом случае ток, протекающий через нагрузку равен нулю (IН = 0), поэтому выражения для напряжения, тока и входного сопротивления в линии принимают вид:

(22)

На рис.6 эти зависимости проиллюстрированы графически. Из соотношений (22) и графиков следует:

  • в линии, разомкнутой на конце, устанавливается режим стоячей волны, напряжение, ток и входное сопротивление вдоль линии изменяются по периодическому закону с периодом λЛ/2;
  • входное сопротивление разомкнутой линии является чисто мнимым за исключением точек с координатами z = Л/4, n = 0,1,2,…;
  • если длина разомкнутой линии меньше λЛ/4, то такая линия эквивалентна ёмкости;
  • разомкнутая на конце линия длиной λЛ/4 эквивалентна последовательному резонансному на рассматриваемой частоте контуру и имеет нулевое входное сопротивление;
  • линия, длина которой лежит в интервале от λЛ/4 до λЛ/2, эквивалентна индуктивности;
  • разомкнутая на конце линия длиной λЛ/2 эквивалентна параллельному резонансному контуру на рассматриваемой частоте и имеет бесконечно большое входное сопротивление.

Замкнутая линия

Рис.7. Эпюры напряжений, тока и входного сопротивления в короткозамкнутой линии

В этом случае напряжение на нагрузке равно нулю (UН = 0), поэтому напряжение, ток и входное сопротивление в линии принимают вид:

(23)

На рис.7 эти зависимости проиллюстрированы графически.

Используя результаты предыдущего раздела, нетрудно самостоятельно сделать выводы о трансформирующих свойствах короткозамкнутой линии. Отметим лишь, что в замкнутой линии также устанавливается режим стоячей волны. Отрезок короткозамкнутой линии, длиной меньше λЛ/4 имеет индуктивный характер входного сопротивления, а при длине λЛ/4 такая линия имеет бесконечно большое входное сопротивление на рабочей частоте[9].

Ёмкостная нагрузка

Рис.8. Эпюры напряжения, тока и входного сопротивления в линии, нагруженной на ёмкость

Как следует из анализа работы разомкнутой линии, каждой ёмкости C на данной частоте ω можно поставить в соответствие отрезок разомкнутой линии длиной меньше λЛ/4. Ёмкость C имеет ёмкостное сопротивление . Приравняем величину этого сопротивления к входному сопротивлению разомкнутой линии длиной l < λЛ/4:

.

Отсюда находим длину линии, эквивалентную по входному сопротивлению ёмкости C:

.

Зная эпюры напряжения, тока и входного сопротивления разомкнутой линии, восстанавливаем их для линии, работающей на ёмкость (рис.8). Из эпюр следует, что в линии, работающей на ёмкость, устанавливается режим стоячей волны.

При изменений ёмкости эпюры сдвигаются вдоль оси z. В частности, при увеличении ёмкости ёмкостное сопротивление уменьшается, напряжение на ёмкости падает и все эпюры сдвигаются вправо, приближаясь к эпюрам, соответствующим короткозамкнутой линии. При уменьшении ёмкости эпюры сдвигаются влево, приближаясь к эпюрам, соответствующим разомкнутой линии.

Индуктивная нагрузка

Рис.9. Эпюры напряжения, тока и входного сопротивления в линии, работающей на индуктивность

Как следует из анализа работы замкнутой линии, каждой индуктивности L на данной частоте ω можно поставить в соответствие отрезок замкнутой линии длиной меньше λЛ/4. Индуктивность L имеет индуктивное сопротивление iXЛ = iωL. Приравняем это сопротивление к входному сопротивлению замкнутой линии длиной λЛ/4:

.

Отсюда находим длину линии l, эквивалентную по входному сопротивлению индуктивности L:

.

Зная эпюры напряжения, тока и входного сопротивления замкнутой на конце линии, восстанавливаем их для линии, работающей на индуктивность (рис. 9). Из эпюр следует, что в линии, работающей на индуктивность, также устанавливается режим стоячей волны. Изменение индуктивности приводит к сдвигу эпюр вдоль оси z. Причем с увеличением L эпюры сдвигаются вправо, приближаясь к эпюрам холостого хода, а с уменьшением L — влево по оси z, стремясь к эпюрам короткого замыкания.

Активная нагрузка

В этом случае ток и напряжение на нагрузке RН связаны соотношением UН = IНRН[10]. Выражения для напряжения и тока в линии (21) принимают вид:

(23)

Рассмотрим работу такой линии на примере анализа напряжения. Найдем из (23) амплитуду напряжения в линии:

(24)

Отсюда следует, что можно выделить три случая:

  • Сопротивление нагрузки равно волновому сопротивлению линии RН = W [6][7];
  • Сопротивление нагрузки больше волнового сопротивления линии RН > W;
  • Сопротивление нагрузки меньше волнового сопротивления линии RН < W.

В первом случае из (24) следует |U| = UН, то есть распределение амплитуды напряжения вдоль линии остается постоянным, равным амплитуде напряжения на нагрузке. Это соответствует режиму бегущей волны в линии.

Комплексная нагрузка

См. также

Примечания

  1. ГОСТ 18238-72. Линии передачи сверхвысоких частот. Термины и определения.
  2. 1 2 3 4 Коэффициент затухания α определяет скорость уменьшения амплитуды волны при распространении вдоль линии.
  3. Коэффициент фазы β определяет скорость изменения фазы волны вдоль линии.
  4. Волновым сопротивлением линии передачи называется отношение напряжения к току в бегущей волне.
  5. 1 2 Гиперболические функции
  6. 1 2 3 Такая линия называется полностью согласованной.
  7. 1 2 3 4 5 Не реализуемо на практике. Является лишь математической абстракцией Возможно лишь приближение в той, или иной степени.
  8. ,
  9. Это свойство короткозамкнутого четвертьволнового отрезка линии позволяет использовать его в практических устройствах как «металлический изолятор».
  10. Закон Ома

Read other articles:

Iksaka BanuLahir(1964-10-07)7 Oktober 1964Yogyakarta, IndonesiaPekerjaanSastrawan, komikus, praktisi periklananTahun aktif1989 - sekarang Iksaka Banu (lahir 7 Oktober 1964) adalah seniman berkebangsaan Indonesia. Namanya dikenal melalui karya-karyanya berupa komik dan prosa yang dipublikasikan ke berbagai media massa. Iksaka Banu merupakan salah satu penerima Penghargaan Kusala Sastra Khatulistiwa melalui karyanya, Semua Untuk Hindia, pada tahun 2014, dan Penghargaan Pena Kencana (2008 ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Rei Jonishi上西怜Nama lainReechan (れーちゃんcode: ja is deprecated )Lahir28 Mei 2001 (umur 22)AsalPrefektur ShigaGenreJ-popPekerjaanPenyanyiTahun aktifNovember 2015–sekarangArtis terkaitNMB48 Rei Jonishi (上西怜code: ja is deprecate...

 

Cet article est une ébauche concernant le Québec et la géographie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Détroit d'Hudson Le détroit d'Hudson est le passage en haut à droite entre l'île de Baffin et le Québec, conduisant à la baie d'Hudson. Géographie humaine Pays côtiers Canada Géographie physique Type Détroit Localisation Baie d'Hudson et passage du Nord-Ouest - détroit de Davis (océan...

Coppa Italia DilettantiSport Calcio TipoClub FederazioneFIGC Paese Italia OrganizzatoreLega Nazionale Dilettanti Cadenzaannuale Aperturafebbraio Chiusuramaggio Partecipanti19 (fase finale) dal 1999 FormulaFase a gironiEliminazione diretta Sito InternetSito ufficiale StoriaFondazione1966(1999 formula odierna) Numero edizioni56 Detentore Cast Brescia Record vittorie Casarano (2) Edizione in corsoCoppa Italia Dilettanti 2023-2024 Coccarda italiana tricolore Modifica dati su Wikidata...

 

Barbi3SutradaraMonty TiwaProduserChand Parwez ServiaSkenarioMonty TiwaPemeranTiti KamalDeddy Mahendra DestaCathy SharonPoppy SoviaFrancine RoosendaSujiwo TejoElmayana SabreniaAugie FantinusDimas ProjosujadiTimbul SrimulatPenata musikInnerlight & DragoSinematograferFadjar SoebektiPenyuntingCesa David LuckmansyahPerusahaanproduksiStarvisionTanggal rilis26 September 2008Durasi85 menitNegaraIndonesiaBahasaBahasa Indonesia Barbi3 adalah film drama remaja Indonesia yang dirilis pada tahun...

 

Christopher McDonaldMcDonald di Tribeca Film Festival pada tahun 2011.Lahir15 Februari 1955 (umur 69)Kota New York, New York, Amerika SerikatAlmamaterKampus HobartPekerjaanAktorTahun aktif1978–sekarang Christopher McDonald[1][2] adalah aktor film dan televisi asal dan berkebangsaan Amerika Serikat. Dia memerankan Darryl Dickinson di Thelma & Louise (1991), Shooter McGavin di Happy Gilmore (1996), Ward Cleaver di adaptasi film dari Leave It to Beaver (1997), Ke...

Grand Prix Britania 2016 Lomba ke-10 dari 21 dalam Formula Satu musim 2016 Detail perlombaanTanggal 10 Juli 2016 (2016-07-10)Nama resmi 2016 Formula 1 British Grand Prix[1]Lokasi Sirkuit SilverstoneSilverstone, InggrisSirkuit Sirkuit permanenPanjang sirkuit 5.891 km (3.661 mi)Jarak tempuh 52 putaran, 306.198 km (190.263 mi)Cuaca Hujan saat awal balapan, kering setelahnyaPosisi polePembalap Lewis Hamilton MercedesWaktu 1:29.287Putaran tercepatPembalap Nico Rosberg MercedesWaktu 1:...

 

Darja beralih ke halaman ini. Untuk desa di Iran, lihat Darreh Ja. Untuk Desa Dârja Romania, lihat Panticeu. Bahasa Arab Maghrib Darija WilayahArab MaghribEtnisArab-BerberPenutur Rumpun bahasaAfroasiatik SemitSemit TengahArab KlasikBahasa Arab Maghrib Sistem penulisanAbjad ArabAspek ketatabahasaanTipologiPredikat–subjek–objek [sunting di Wikidata]Kode bahasaISO 639-3–Glottolognort3191[1]QIDQ1194795 Sampel  Video dari seorang penutur yang berbicara dalam bahas...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada September 2016. Zalim KishevInformasi pribadiNama lengkap Zalim Zaurbiyevich KishevTanggal lahir 18 Juli 1990 (umur 33)Tinggi 1,70 m (5 ft 7 in)Posisi bermain BekInformasi klubKlub saat ini FC Angusht NazranKarier senior*Tahun Tim Tampil (Gol)200...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Ladakh – berita · surat kabar · buku · cendekiawan · JSTOR Ladakh Ladakh, yang terletak di bagian timur pemerintahan Jammu dan Kashmir adalah salah satu daerah tempat tinggal tertinggi di muka bumi. Suat...

 

Bagian dari seriIlmu Pengetahuan Formal Logika Matematika Logika matematika Statistika matematika Ilmu komputer teoretis Teori permainan Teori keputusan Ilmu aktuaria Teori informasi Teori sistem FisikalFisika Fisika klasik Fisika modern Fisika terapan Fisika komputasi Fisika atom Fisika nuklir Fisika partikel Fisika eksperimental Fisika teori Fisika benda terkondensasi Mekanika Mekanika klasik Mekanika kuantum Mekanika kontinuum Rheologi Mekanika benda padat Mekanika fluida Fisika plasma Ter...

 

Moorilla Hobart International 2011 Sport Tennis Data 7 gennaio - 15 gennaio Edizione 18ª Superficie Cemento Campioni Singolare Jarmila Groth Doppio Sara Errani / Roberta Vinci 2010 2012 Il Moorilla Hobart International 2011 è stato un torneo di tennis giocato sul cemento. È stata la 18ª edizione del Moorilla Hobart International, che fa parte della categoria International nell'ambito del WTA Tour 2011. Si è giocato al Hobart International Tennis Centre di Hobart in Australia, dal 7 al 1...

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

Prince of Siam, son of Chulalongkorn Tribejrutama DhamrongBorn(1882-02-08)8 February 1882Bangkok, SiamDied22 November 1887(1887-11-22) (aged 5)Bangkok, SiamHouseChakri DynastyFatherChulalongkorn (Rama V)MotherSaovabha Phongsri Tribejrutama Dhamrong (Thai: ตรีเพ็ชรุตม์ธำรง; RTGS: Triphetcharutthamrong; 8 February 1882 – 22 November 1887) was a Prince of Siam (later Thailand). He was a member of the Siamese Royal Family. He was a son of Chulalongkorn....

 

Museo archeologico statale di CingoliPalazzo municipale, sede del museo. UbicazioneStato Italia LocalitàCingoli IndirizzoPalazzo Comunale, Piazza Vittorio Emanuele II 5 Coordinate43°22′27.16″N 13°12′59.18″E / 43.374211°N 13.21644°E43.374211; 13.21644Coordinate: 43°22′27.16″N 13°12′59.18″E / 43.374211°N 13.21644°E43.374211; 13.21644 CaratteristicheTipoArcheologia Apertura1994 GestioneMIBACT - Polo museale delle Marche DirettoreSofia...

Расположение семяпочек в цветке морозника вонючего (Helleborus foetidus) Семязача́ток, или семяпо́чка (лат. ovulum), — образование у семенных растений, из которого (обычно после оплодотворения) развивается семя. Представляет собой женский спорангий (мегаспорангий) семенных р...

 

L'Étang-Bertrand Église Saint-Siméon. Blason Administration Pays France Région Normandie Département Manche Arrondissement Cherbourg Intercommunalité Communauté d'agglomération du Cotentin Maire Mandat Michel Lechevalier 2020-2026 Code postal 50260 Code commune 50176 Démographie Gentilé Étanchois Populationmunicipale 350 hab. (2021 ) Densité 40 hab./km2 Géographie Coordonnées 49° 27′ 56″ nord, 1° 33′ 41″ ouest Altitude Min. 9...

 

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

Pour l’article homonyme, voir Buquet. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article doit être actualisé (avril 2015). Des passages de cet article ne sont plus d’actualité ou annoncent des événements désormais passés. Améliorez-le ou discutez-en. Vous pouvez également préciser les sections à actualiser en utilisant {{section à actualiser}}. Cet article est une ébauche concernant un arbitre de football. Vous pouvez partager vos co...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...