Борковичи (Витебская область)
|
Read other articles:
Gorton's, Inc.Berkas:Gorton's Logo.pngJenisSubsidierIndustriPengolahan panganDidirikan1849; 174 tahun lalu (1849) (sebagai John Pew & Sons)PendiriJohn PewKantorpusatGloucester, Massachusetts, Amerika SerikatTokohkunciKurt Hogan, CEOProdukMakanan laut bekuIndukNippon Suisan KaishaSitus webhttp://www.gortons.com/ 128 Rogers StreetGloucester, Massachusetts Gorton's of Gloucester adalah sebuah subsidier dari perusahaan makanan laut Jepang Nippon Suisan Kaisha, Ltd., memproduksi stik ikan...
Bergen Lambang kebesaranLetak Bergen di Weißenburg-Gunzenhausen NegaraJermanNegara bagianBayernWilayahMittelfrankenKreisWeißenburg-GunzenhausenMunicipal assoc.Nennslingen Subdivisions5 OrtsteilePemerintahan • MayorWerner RöttenbacherLuas • Total19,91 km2 (769 sq mi)Ketinggian539 m (1,768 ft)Populasi (2013-12-31)[1] • Total1.122 • Kepadatan0,56/km2 (1,5/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos9179...
Halaman ini berisi artikel tentang famili laba-laba Theraphosidae. Untuk laba-laba tarantula serigala Eropa, lihat Lycosa tarantula. Untuk kegunaan lain, lihat Tarantula (disambiguasi). Tarantula Mexican redknee tarantula Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Arachnida Ordo: Araneae Superfamili: Theraphosoidea Famili: TheraphosidaeThorell, 1870 Upafamili Acanthopelminae Aviculariinae Eumenophorinae Harpactirinae Ischnocolinae Ornithoctoninae Poecilotheriinae Selenocos...
Aboriginals Protection and Restriction of the Sale of Opium Act 1897Parliament of Queensland Long title An Act to make Provision for the better Protection and Care of the Aboriginal and Half-caste Inhabitants of the Colony, and to make more effectual Provision for Restricting the Sale and Distribution of Opium. Status: Repealed The Aboriginals Protection and Restriction of the Sale of Opium Act 1897 (Qld), was an Act of the Parliament of Queensland. It was the first instrument of separate le...
Resistance of a fluid to shear deformation ViscosityA simulation of liquids with different viscosities. The liquid on the left has lower viscosity than the liquid on the right.Common symbolsη, μDerivations fromother quantitiesμ = G·tDimension M L − 1 T − 1 {\displaystyle {\mathsf {M}}{\mathsf {L}}^{-1}{\mathsf {T}}^{-1}} Part of a series onContinuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion Laws Conservations...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
The smaller establishments such as monastic cells and notable monastic granges (particularly those with resident monks) and camerae of the military orders of monks (Knights Templars and Knights Hospitallers) are included. The numerous monastic hospitals per se are not included here unless at some time the foundation had, or was purported to have, the status or function of an abbey, priory, or preceptory/commandery. Layout Communities/provenance: shows the status and communities existing at e...
Disambiguazione – Se stai cercando altri significati, vedi Vittorio Alfieri (disambigua). «Volli, e volli sempre, e fortissimamente volli» (dalla Lettera responsiva a Ranieri de' Calzabigi, 7 settembre 1783) Vittorio AlfieriVittorio Alfieri ritratto da François-Xavier Fabre (1797), Palazzo Alfieri (Asti), ritenuto dal poeta il più somigliante[1] e da lui donato alla sorella Giulia nel 1798[2]Conte di CortemiliaStemma In carica1750 –1803[3] Investitura1769...
American judge George Craig Ludlow25th Governor of New JerseyIn officeJanuary 18, 1881 – January 15, 1884Preceded byGeorge B. McClellanSucceeded byLeon AbbettPresident of the New Jersey SenateIn office1878Preceded byLeon AbbettSucceeded byWilliam J. SewellMember of the New Jersey Senate from Middlesex CountyIn office1876–1880 Personal detailsBorn(1830-04-06)April 6, 1830Milford, New Jersey, U.S.DiedDecember 18, 1900(1900-12-18) (aged 70)New Brunswick, New Jersey, U.S.Pol...
هناك العديد من الحوادث النووية والإشعاعية التي تؤدي إلي الوفاة، مثل حوادث محطات الطاقة النووية، وحوادث الغواصات النووية، وحوادث العلاج الإشعاعي. قائمة الحوادث الوفيات الحادثة التاريخ تفاصيل متنازع عليها كارثة كيشتيم 29 سبتمبر 1957 عدد الوفيات غير معروف، وتتراوح التقديرات ...
Flora and fauna of Iraq The wildlife of Iraq includes its flora and fauna[1] and their natural habitats. Iraq has multiple biomes from mountainous region in the north to the wet marshlands along the Euphrates river. The western part of the country is mainly desert and some semi-arid regions. As of 2001, seven of Iraq's mammal species and 12 of its bird species were endangered. The endangered species include the northern bald ibis and Persian fallow deer. The Syrian wild ass is extinct...
Sino-Tibetan language of Northeast India For the parent language branch, see Zeme languages. ZemeZeliangZeliang written in Meitei scriptNative toIndiaRegionAssam, Manipur, NagalandEthnicityZeme NagaNative speakers110,000 (2011 census)[1]Language familySino-Tibetan Tibeto-BurmanCentral Tibeto-Burman languages (?)Kuki-Chin-NagaZemeicZemeLanguage codesISO 639-3nzmGlottologzeme1240ELPZeme Naga Zeme (also called Empeo, Jeme, Kacha and Zemi[1]) is a Sino-Tibetan language s...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) فرانك كوفاكس معلومات شخصية الميلاد 4 ديسمبر 1919(1919-12-04)أوكلاند الوفاة فبراير 1990 (70&...
Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. Pokémon Logo Pokémon versi internasional.PengarangSatoshi TajiriJudul asli...
English-language international newspaper This article is about the paper that existed 1967–2013. For its predecessors, see New York Herald Tribune § European edition, and New York Herald § European edition. International Herald TribuneThe August 26, 2013 front page ofthe International Herald TribuneTypeDaily newspaperFormatBroadsheetOwner(s)Whitney Communications, The Washington Post and The New York Times Company [1]Founder(s)James Gordon Bennett Jr.Founded1887LanguageE...
ماكابي ريشون لتسيون معلومات النادي البلد إسرائيل تأسس عام 1976 الموقع الرسمي الموقع الرسمي البطولات أطقم الفريق الطقم الأساسي الطقم الاحتياطي تعديل مصدري - تعديل ماكابي ريشون لتسيون هو فريق كرة سلة إسرائيلي أٌسس عام 1976.[1][2][3] مراجع ^...
Insurrection royaliste du 13 vendémiaire an IV « Attaque de la Convention nationale. Journée mémorable du 13 vendémaire an 4e de la République française. »Eau-forte de Pierre Gabriel Berthault d'après Abraham Girardet (1795). Informations générales Date 5 octobre 1795 Lieu Paris Issue Victoire des Républicains Belligérants République française Royalistes Commandants • Paul Barras• Napoléon Bonaparte • Louis Thévenet, dit Danican Forces en présence 5...
Questa voce o sezione sull'argomento artisti marziali non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Peter AertsNazionalità Paesi Bassi Altezza192 cm Peso110 kg Kickboxing SpecialitàMuay Thai CategoriaSupermassimi SquadraTeam Aerts Modifica dati su Wikidata · Manuale Peter Aerts (Eindhoven, 25 ottobre 1970) è un kickboxer olandese, ...
British historian (born 1947) Richard OveryFRHistS FBAOvery lecturing at King's College London in 2015BornRichard James Overy (1947-12-23) 23 December 1947 (age 76)NationalityBritishAlma materGonville and Caius College, CambridgeOccupationHistorianKnown forStudies on military history, especially the Second World WarNotable credit(s)Why the Allies Won, The Air War: 1939–1945 Richard James Overy FRHistS FBA (born 23 December 1947) is a British historian who has publishe...
If G is a finitely generated group with exponent n, is G necessarily finite? Algebraic structure → Group theoryGroup theory Basic notions Subgroup Normal subgroup Group action Quotient group (Semi-)direct product Direct sum Free product Wreath product Group homomorphisms kernel image simple finite infinite continuous multiplicative additive cyclic abelian dihedral nilpotent solvable Glossary of group theory List of group theory topics Finite groups Cyclic group Zn Symmetric group Sn Alterna...