Quasi-Zenith Satellite System (QZSS), «Квазизенитная спутниковая система» (яп.準天頂дзюнтэнтё:) — проект региональной системы синхронизации времени и одна из систем дифференциальной коррекции для GPS, сигналы которой будут доступны в Японии.
Первый спутник, «Митибики» (яп.みちびき, «указание пути»), был запущен 11 сентября 2010 года[1].
QZSS предназначена для мобильных приложений, для предоставления услуг связи (видео, аудио и другие данные) и глобального позиционирования.
Что касается услуг позиционирования, QZSS сама по себе предоставляет ограниченную точность и по существующей спецификации не работает в автономном режиме. С точки зрения пользователей, QZSS предстаёт как система дифференциальной коррекции. Система позиционирования QZSS может работать совместно с геостационарными спутниками в японской системе MTSAT[англ.], находящейся в процессе создания, которая сама по себе является системой дифференциальной коррекции, подобной системе WAAS, созданной США.
Ввод системы в строй должен увеличить доступность трёхмерной спутниковой навигации на территории Японии до 99,8 % времени. Дополнительным преимуществом околозенитного положения спутников будет то, что в условиях мегаполисов их сигналы не будут экранироваться и отражаться стенами высотных зданий.
В марте 2013 года кабинет министров Японии объявил о планах расширения системы QZSS с трех спутников до четырех, сроки полного вывода всех спутников были перенесены на конец 2017 года. Основным подрядчиком для строительства трех последующих спутников была выбрана компания Mitsubishi Electric, с которой был подписан контракт на 526 млн долл.[4]
Первый спутник системы был запущен в 2010 году, три остальных были запущены в 2017 году[5][6].
Официальная полноценная эксплуатация системы из четырех спутников была начата 1 ноября 2018 года[7].
В перспективе, к 2024 году размер спутниковой группировки планируется довести до 7 спутников[8] плюс 1 резервный[9].
QZSS и дополнение к системе позиционирования
QZSS может улучшить работу системы GPS двумя способами: во-первых, повышением доступности GPS-сигналов, и во-вторых, повышением точности и надёжности работы навигационных систем, работающих с GPS.
Поскольку сигналы о доступности спутников GPS, передаваемые со спутников QZSS, совместимы с модернизированными сигналами GPS и таким образом обеспечена возможность их взаимодействия, QZSS будет передавать сигналы L1C/A, L1C, L2C и L5. Это уменьшает необходимые изменения в спецификации и дизайне приёмников.
В сравнении с автономной системой GPS, комбинированная система GPS и QZSS даёт улучшенную производительность благодаря выбору диапазона коррекционных данных, передаваемых по сигналам L1-SAIF и LEX с QZS. Надёжность повышается также путём передачи данных о состоянии спутников. Предоставляется и другие данные для улучшения поиска спутников GPS.
По первоначальным планам спутники QZS должны нести два типа атомных часов: водородный мазер и атомные часы на основе рубидия. Разработка пассивного водородного мазера была прекращена в 2006 году. Сигнал позиционирования будет генерироваться с использованием атомных рубидиевых часов и будет использована архитектура подобная системе отсчёта времени GPS. QZSS также будет способна использовать двунаправленный спутниковый перенос времени и частоты (Two-Way Satellite Time and Frequency Transfer, TWSTFT), которая будет использована для сбора фундаментальных знаний о поведении спутниковых часов в космосе и других исследовательских целей.
Измерение времени и удалённая синхронизация QZSS
Несмотря на то, что первое поколение системы измерения времени (timekeeping system (TKS)) будет основано на рубидиевых атомных часах, первый спутник QZS будет нести прототип экспериментальной системы синхронизации. В течение первой половины двухгодичной орбитальной тестовой фазы, предварительные тесты исследуют возможность технологии отсчёта времени без атомных часов, которая будет использована в дальнейшем на спутниках QZSS второго поколения.
Упомянутая технология TKS является новой спутниковой системой измерения времени, которая не требует атомных часов на борту, как в используемых ныне спутниках GPS, ГЛОНАСС и разрабатываемых спутниках системы Galileo. Этот концепт отличается использованием системы синхронизации объединённой с упрощёнными часами на борту, которые работают как приёмопередатчики, перераспространяющие информацию о точном времени, предоставленную удалённо сетью синхронизации времени, расположенной на земле. Это позволяет системе работать оптимально когда спутники находятся в непосредственном контакте с наземной станцией, что делает систему подходящей для использования в QZSS. Небольшая масса и невысокая стоимость изготовления и запуска спутников являются значительными преимуществами такой новой системы. Обзор такой системы так же как и два возможных варианта построения сети синхронизации времени для QZSS были изучены и опубликованы в работе Фабрицио Тапперо (Fabrizio Tappero)[10]
Наземная инфраструктура
Наземный сегмент QZSS включает главную станцию управления в Цукубе, две станции контроля слежения и связи на Окинаве и восемь станций наблюдения, расположение которых выбрано для обеспечения максимального географического охвата мониторинга.
Главная станция управления получает данные телеметрии со всех станций наблюдения, оценивает и прогнозирует расхождения времени бортовых атомных часов и элементов орбиты спутников от расчётных, на основании которых генерирует навигационные сообщения для передачи на спутники через другие станции.
Станции контроля слежения и связи контролируют состояние работы спутников и пересылают на них метки времени от наземных атомных часов и навигационные сообщения, полученные от главной станции управления.
Проектированием, постройкой и техническим обслуживанием наземной инфраструктуры для спутниковой системы и ее последующей эксплуатацией в течение 15 лет занимается специально созданная для этих целей QZSS Services Inc., дочерняя компания NEC Corp., с которой для этого правительство Японии заключило контракт на сумму более $1,2 млрд.[4]
Три спутника двигаются с интервалом в 8 часов по геосинхроннойвысокой эллиптической орбите Quasi-Zenith Satellite Orbit (QZO) (российский аналог - «Тундра»). Такие орбиты позволяют спутнику держаться более 12 часов в день с углом возвышения более 70° (то есть большую часть времени спутник находится практически в зените). Этим и объясняется термин «quasi-zenith», то есть «кажущийся находящимся в зените», который дал название системе.
Еще один спутник находится на геостационарной орбите в точке над экватором приблизительно на долготе Японии.[4][8]
Номинальные орбитальные элементы трех геосинхронных спутников таковы:
↑ 12Japan Aerospace Exploration Agency (2016-10-14), Interface Specifications for QZSS, version 1.8, Архивировано из оригинала6 апреля 2013, Дата обращения: 10 июня 2017Источник (неопр.). Дата обращения: 10 июня 2017. Архивировано из оригинала 6 апреля 2013 года.