ONNX позволяет обучать модели в рамках одной среды, а затем переносить их в другую среду для распознавания лиц, распознавания жестов или объектов и т. д. Это позволяет разработчикам использовать правильную комбинацию инструментов. Модели ONNX в настоящее время поддерживаются в Caffe2, Microsoft Cognitive Toolkit, MXNet, PyTorch и OpenCV, и есть интерфейсы для многих других популярных фреймворков и библиотек.
ONNX Model Zoo — это коллекция моделей глубокого обучения с предварительным обучением, доступных в формате ONNX. Каждая модель поставляется с интерактивной оболочкойIPython для обучения модели и выработки соответствующей модели. Модели написаны на Python и содержат ссылки на набор обучающих данных, а также ссылки на оригинальный научный документ, описывающий архитектуру модели.
Первоначально ONNX назывался Toffee[4] и был разработан командой PyTorch в Facebook[5]. В сентябре 2017 года он был переименован в ONNX и анонсирован Facebook и Microsoft.[6] Позже IBM, Huawei, Intel, AMD, Arm и Qualcomm объявили о поддержке этой инициативы[7].
ONNX.js
ONNX.js является JavaScript-библиотекой для запуска ONNX модели в браузерах и на Node.js. С ONNX.js веб-разработчики могут интегрировать и тестировать предварительно обученные модели ONNX непосредственно в веб-браузере. Это имеет следующие преимущества: сокращение взаимодействия сервер-клиент, защита пользовательских данных, кроссплатформенноемашинное обучение без установки программного обеспечения на клиенте.
ONNX.js может быть запущен как на CPU, так и на GPU. Для работы на процессоре используется WebAssembly. Это позволит модели работать практически на родной скорости. Кроме того, ONNX.js использует Web worker[англ.] для обеспечения «многопоточной» вычислительной среды распараллеливания. Эмпирическая оценка показывает очень многообещающие улучшения производительности процессора, используя все преимущества WebAssembly и Web Workers. Для работы на графических процессорах WebGL является стандартом для доступа к функциям графического процессора[8][9][10].