HD 132563
|
Read other articles:
SedaDesaNegara IndonesiaProvinsiJawa BaratKabupatenKuninganKecamatanMandirancanKode Kemendagri32.08.14.2003 Luas215,614 HaJumlah penduduk2.513 jiwaKepadatan1258 jiwa per km2 Kantor Desa Seda, dengan latar belakang Gunung Ceremai Seda adalah desa di kecamatan Mandirancan, Kuningan, Jawa Barat, Indonesia. Berada di kaki Gunung Ceremai, Desa Seda memiliki bentuk memanjang dengan batas-batas sebagai berikut: Sebelah utara berbatasan dengan Desa Sukasari dan Desa Nanggerangjaya, Sebelah timur...
2012 studio album by Pet Shop BoysElysiumStudio album by Pet Shop BoysReleased5 September 2012 (2012-09-05)Recorded2011–2012StudioSoundEQ (Hollywood)Capitol (Hollywood)Record One (Sherman Oaks, California)Live Drum Tracks (Los Angeles)[a]GenreSynth-popLength51:02LabelParlophoneProducer Andrew Dawson Pet Shop Boys Pet Shop Boys chronology Format(2012) Elysium(2012) Electric(2013) Singles from Elysium WinnerReleased: 3 July 2012 LeavingReleased: 12 October 2012...
Questa voce sull'argomento calciatori finlandesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Leo Väisänen Nazionalità Finlandia Altezza 186 cm Calcio Ruolo Difensore Squadra Austin FC Carriera Giovanili KäPa2015 HJK Squadre di club1 2015-2016 Klubi 0419 (3)2016 HJK3 (0)2016→ PK-35 Vantaa9 (1)2017-2018 RoPS46 (1)2018-2020 Den Bosch45 (6)[1...
Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Iyam Renzia – berita · surat kabar · buku · cendekiawan · JSTOR (28 April 2024) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Iyam RenziaLahirIlham...
Chinese snooker player In this Chinese name, the family name is Zhang (张). Zhang AndaZhang Anda in Paul Hunter Classic 2012Born (1991-12-25) December 25, 1991 (age 32)Shaoguan, Guangdong, ChinaSport country ChinaNicknameMighty Mouse[1]Professional2009–2011, 2012–2020, 2021–presentHighest ranking11 (March 2024)Current ranking 12 (as of 7 May 2024)Maximum breaks2Century breaks133 (as of 6 May 2024)Tournament winsRanking1 Zhang AndaTraditional Chinese張安達Simpl...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
Навчально-науковий інститут інноваційних освітніх технологій Західноукраїнського національного університету Герб навчально-наукового інституту інноваційних освітніх технологій ЗУНУ Скорочена назва ННІІОТ ЗУНУ Основні дані Засновано 2013 Заклад Західноукраїнський �...
Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...
WWE professional wrestling roster division NXT UKLogo for the brand and the NXT UK television programmeProduct typeProfessional wrestlingSports entertainmentOwnerWWEProduced byPaul Triple H LevesqueCountryUnited KingdomIntroduced15 December 2016 (as United Kingdom)18 June 2018 (as NXT UK)Discontinued4 September 2022Related brandsRawSmackDownNXT205 LiveECWPrevious names: United Kingdom(2016 – 2018)General Manager: Johnny Saint(7 June 2018 – 4 September 2022)Assistant to the General Ma...
Bialystok University of TechnologyPolitechnika BiałostockaBialystok University Of Technology emblemTypePublicEstablishedDecember 1, 1949 (1949-12-01)RectorProf. Marta Kosior-Kazberuk, PhD, Eng.Students7,104 (16.11.2021) [1]LocationBiałystok, Podlaskie Voivodeship, Poland53°07′00″N 23°08′46″E / 53.11667°N 23.14611°E / 53.11667; 23.14611AffiliationsMagna Charta Universitarium 2020, IROs Forum, EUA, KRASP, KRPUTWebsitehttp://pb.edu.pl/...
State park in Oregon, United States Viento State ParkA windsurfer on the Columbia River at Viento State Park.Show map of OregonShow map of the United StatesTypePublic, state, campingLocationHood River County, OregonNearest cityHood RiverCoordinates45°41′38″N 121°40′04″W / 45.6940067°N 121.6678525°W / 45.6940067; -121.6678525[1]Operated byOregon Parks and Recreation Department Viento State Park is a state park in north central Hood River Co...
Every natural number can be represented as the sum of four integer squares For Lagrange's identity, see Lagrange's identity (disambiguation). For Lagrange's theorem, see Lagrange's theorem (disambiguation). four-square theorem and four square theorem redirect here. For other uses, see four square (disambiguation). Unlike in three dimensions in which distances between vertices of a polycube with unit edges excludes √7 due to Legendre's three-square theorem, Lagrange's four-square theorem sta...
Former country Wari Empire6th century–11th centuryExpansion and area of cultural influence.CapitalHuariCommon languagesAymara, others.Religion Staff GodHistorical eraMiddle Horizon• Established 6th century• Disestablished 11th century Preceded by Succeeded by Wari culture Tiwanaku Empire Kingdom of Cusco Chimor Aymara kingdoms Today part ofPeru The Wari Empire or Huari Empire was a political formation that emerged around 600 AD (CE) in Peru's Ayacucho Basin and grew to co...
S. M. Krishna Menteri Urusan Luar NegeriMasa jabatan23 Mei 2009 – 28 Oktober 2012Perdana MenteriManmohan SinghPendahuluPranab MukherjeePenggantiSalman KhurshidGubernur MaharashtraMasa jabatan12 Desember 2004 – 5 Maret 2008Ketua MenteriVilasrao DeshmukhPendahuluMohammed FazalPenggantiS. C. JamirKetua Menteri KarnatakaMasa jabatan11 Oktober 1999 – 28 Mei 2004GubernurV. S. RamadeviT. N. ChaturvediPendahuluJ. H. PatelPenggantiN. Dharam SinghDaerah pemilihanMaddurD...
Mục từ này liên quan đến chủ đề giáo dục giới tính và tình dục. Thông tin ở đây có thể không phù hợp với một số đối tượng độc giả hoặc khi truy cập ở những nơi công cộng. Wikipedia không chịu trách nhiệm về những nội dung có thể không phù hợp cho một số người xem, xem chi tiết tại Wikipedia:Phủ nhận về nội dung. Hai con sư tử đang giao cấu ở Maasai Mara, Kenya Sự giao hợp giữa...
Untuk kegunaan lain, lihat Sri Asih. Sri Asih Penerbit Bumilangit Munculperdana 1954 Pencipta R.A. Kosasih Karakteristik Nama KarakterNani WijayaRengganisAlanaSpesiesManusiaAfiliasikelompokPatriotJagabumiRekan perjuanganGundalaGodamNusantaraVirgoTiraAquanusKemampuanKekuatan superTerbangKebalMenggandakan diriMemperbesar tubuhMengendalikan selendang sakti Sri Asih adalah karakter adisatria (pahlawan super) ciptaan R.A. Kosasih.[1] Sri Asih pertama kali muncul pada tahun 1954 di komik Sr...
Season of television series Season of television series Samurai JackSeason 5DVD coverStarring Phil LaMarr Greg Baldwin Tara Strong No. of episodes10ReleaseOriginal networkAdult SwimOriginal releaseMarch 11 (2017-03-11) –May 20, 2017 (2017-05-20)Season chronology← PreviousSeason 4 List of episodes The fifth and final season of Samurai Jack, an American animated series, premiered on Adult Swim's Toonami programming block on March 11, 2017, and concluded its run on May 20...
Bagian dari seriGereja Katolik menurut negara Afrika Afrika Selatan Afrika Tengah Aljazair Angola Benin Botswana Burkina Faso Burundi Chad Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Guinea Khatulistiwa Jibuti Kamerun Kenya Komoro Lesotho Liberia Libya Madagaskar Malawi Mali Maroko Mauritania Mauritius Mesir Mozambik Namibia Niger Nigeria Pantai Gading Republik Demokratik Kongo Republik Kongo Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland ...
Centered figurate number that represents a nonagon with a dot in the center A centered nonagonal number (or centered enneagonal number) is a centered figurate number that represents a nonagon with a dot in the center and all other dots surrounding the center dot in successive nonagonal layers. The centered nonagonal number for n layers is given by the formula[1] N c ( n ) = ( 3 n − 2 ) ( 3 n − 1 ) 2 . {\displaystyle Nc(n)={\frac {(3n-2)(3n-1)}{2}}.} Multiplying the (n - ...
Dieser Artikel beschreibt das Pustertal im naturräumlichen Sinne. Für die gleichnamige Südtiroler Bezirksgemeinschaft siehe Pustertal (Bezirksgemeinschaft). Das Pustertal bei Bruneck Blick über das Hochpustertal bei Innichen Das Pustertal (italienisch Val Pusteria, ladinisch Val de Puster) ist ein im Wesentlichen in Ost-West-Richtung verlaufendes Alpen-Tal. Der Großteil des Tals liegt in Südtirol (Italien), der östlichste Abschnitt in Osttirol (Österreich). Das Pustertal bildet hydro...