Read other articles:

Miss World 2002Azra Akın, Miss World 2002, pada tahun 2004Tanggal7 December 2002TempatAlexandra Palace, London,  Britania RayaPembawa acaraSean Kanan,[1] dan Claire Elizabeth SmithPengisi acaraChayanne, dan BBMakPenyiaranFivePeserta88Finalis/Semifinalis20DebutAlbania, Aljazair, VietnamTidak tampilAustria, Bangladesh, Kep. Virgin BR, Kep. Cayman, Kosta Rika, Rep. Dominika, Hawaii, Islandia, Korea, Malawi, Portugal, St. Maarten, SwissTampil kembaliBahamas, Beli...

 

Ercis Ercis dengan polong muda Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Rosidae Ordo: Fabales Famili: Fabaceae Subfamili: Faboideae Tribus: Fabeae Genus: Lathyrus Spesies: L. oleraceus Nama binomial Lathyrus oleraceusLam. (1779)[1] Sinonim[1] Lathyrus schaeferi Kosterin (2017) Pisum abyssinicum A.Braun (1841) Pisum album Garsault (1764), opus utique rej. Pisum arvense L. (1753) Pisum baclium Steud. (1841)...

 

Об экономическом термине см. Первородный грех (экономика). ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Ран�...

Yeremia 24Kitab Yeremia dalam Alkitab Ibrani, MS Sassoon 1053, foto 283-315.KitabKitab YeremiaKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen24← pasal 23 pasal 25 → Yeremia 24 (disingkat Yer 24) adalah bagian dari Kitab Yeremia dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Berisi perkataan nabi Yeremia bin Hilkia, tentang Yehuda dan Yerusalem, yang hidup pada zaman raja Yosia, Yoahas, Yoyakim, Yoyakhin dan Zedekia dari Kerajaan Yehuda s...

 

مدرسة سعيدية مدرسه سعیدیه مدرسة سعيدية معلومات الموقع الجغرافي المدينة أرسنجان البلد  إيران تعديل مصدري - تعديل   مدرسة سعيدية هي مدرسة تاريخية تعود إلى السلالة الصفوية، وتقع في أرسنجان.[1] مراجع ^ Encyclopaedia of the Iranian Architectural History. Cultural Heritage, Handicrafts and Tourism Organization of Iran. 19 م...

 

Untuk kegunaan lain, lihat Maria Theresia (disambiguasi). Maria TheresiaLukisan karya Martin van Meytens, 1759Maharani Romawi SuciRatu TeutonikumBerkuasa13 September 1745 – 18 Agustus 1765Penobatan13 September 1745Adipati Wanita Utama AustriaRatu Hungaria dan KroasiaBerkuasa20 Oktober 1740 – 29 November 1780Penobatan25 Juni 1741PendahuluKarl IIIPenerusJoseph IIRatu BöhmenBerkuasa20 Oktober 1740 – 19 Desember 1741PendahuluKarl IIPenerusKarl AlbrechtBerkuasa12 Mei 1743 – 29 November 17...

PT Midi Utama Indonesia TbkSebuah gerai Alfamidi di Jl. Delman Utama, Jakarta SelatanNama dagangAlfamidiSebelumnyaPT Midimart Utama (2007 - 2008)JenisPerusahaan publikKode emitenIDX: MIDIIndustriRitelDidirikan31 Juli 2007; 16 tahun lalu (2007-07-31)KantorpusatTangerang, IndonesiaWilayah operasiIndonesiaTokohkunciRullyanto[1](Direktur Utama)Budiyanto Djoko Susanto[1](Komisaris Utama)ProdukTisuAir minum dalam kemasanKapasHandukJasaPerdagangan ritel berbagai macam barangPlat...

 

AugustacityCity of Augusta Augusta – VedutaVeduta di Augusta LocalizzazioneStato Stati Uniti Stato federato Maine ConteaKennebec AmministrazioneSindacoWilliam R. Stokes (Democratico) TerritorioCoordinate44°18′38″N 69°46′46″W / 44.310556°N 69.779444°W44.310556; -69.779444 (Augusta)Coordinate: 44°18′38″N 69°46′46″W / 44.310556°N 69.779444°W44.310556; -69.779444 (Augusta) Altitudine20 m s.l.m. Superficie150,9 ...

 

Pengepungan BukharaBagian dari Penaklukan Kekaisaran Khwarazmia oleh MongolTanggalFebruari 1220LokasiBukhara, kini Uzbekistan39°46′40″N 64°24′37″E / 39.77778°N 64.41028°E / 39.77778; 64.41028Koordinat: 39°46′40″N 64°24′37″E / 39.77778°N 64.41028°E / 39.77778; 64.41028Hasil Kemenangan MongolPihak Kekaisaran Mongol Kekaisaran KhwarazmiaTokoh dan pemimpin Genghis KhanTolui Gür-KhanKekuatan Jumlah perkiraan modern dari 30.00...

Ice hockey positionIn ice hockey, a forward is a player, and a position on the ice, whose primary responsibility is to score and assist goals.[1] Generally, the forwards try to stay in three different lanes of the ice from goal to goal. It is not mandatory, however, to stay in a lane. Staying in a lane aids in forming the common offensive strategy known as a triangle. One forward obtains the puck and then the forwards pass it between themselves making the goalie move side to side.[...

 

Indonesian noodles with meat BakmiBakmi topped with porkAlternative namesBami, bakmieTypeNoodleCourseMain dishPlace of originIndonesia, derived from the Chinese noodle[1]Region or stateIndonesia, Thailand, Singapore, Laos, Suriname, Belgium and the NetherlandsServing temperaturehotMain ingredientsWheat flour, ground pork, soy sauce  Media: Bakmi Bami goreng (fried bakmi) in the Netherlands Bakmi (Javanese: ꦧꦏ꧀ꦩꦶ, romanized: bakmi) or bami (Thai: บะหมี...

 

كلية التربية الموسيقية جامعة حلوان الأسماء السابقة المعهد العالي للتربية الموسيقية معلومات التأسيس 1935 (منذ 89 سنة) تتبع جامعة جامعة حلوان النوع كلية حكومية لغات التدريس اللغة العربية الموقع الجغرافي إحداثيات 30°03′49″N 31°12′59″E / 30.06358°N 31.21629°E / 30.06358; 31.21629   ال�...

City in Washington, United StatesShoreline, WashingtonCityShoreline City HallLocation of Shoreline, WashingtonCoordinates: 47°45′23″N 122°20′23″W / 47.75639°N 122.33972°W / 47.75639; -122.33972CountryUnited StatesStateWashingtonCountyKingCityAugust 31, 1995Government • TypeCouncil–manager • MayorKeith Scully[1] • ManagerBristol S. EllingtonArea[2] • Total12.44 sq mi (32.21 km2...

 

Nebraska affiliate of the Republican Party NEGOP redirects here. For the group sometimes known as New England Republicans, see Rockefeller Republican. Nebraska Republican Party ChairpersonEric UnderwoodGovernorJim PillenLt. GovernorJoe KellySenate leader (Lt. Governor)Joe KellyHouse leaderJohn ArchHeadquarters1610 N StreetLincoln, NE 68508Membership (2021)605,931[1]IdeologyConservatismNational affiliationRepublican PartyColors  RedSeats in the U.S. Senate2 / 2 Seats in the U.S. H...

 

فيزياءعدة أمثلة للظواهر الطبيعية أو الفيزيائية، وتدرس في علم الفيزياء.صنف فرعي من علوم فيزيائية، علوم طبيعية، علوم دقيقةجزء من علوم فيزيائيةيمتهنه فيزيائيفروع فيزياء كلاسيكية (ميكانيكا كلاسيكية، كهرومغناطيسية كلاسيكية، فيزياء حرارية) فيزياء حديثة (نظرية النسبية، ميكا�...

Esta é uma lista de países por PIB nominal per capita entre os anos de 1980 e 2018, feita com base nos dados do FMI em seu relatório World Economic Outlook (Perspectivas para a economia mundial), publicado em 16 de abril de 2013.[1] Valores em dólares internacionais. Estimativas do FMI entre 1980 e 1989 N° País 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1 2  Albânia 686 771 777 770 744 745 808 786 759 818 3  Alemanha 10.750 9.027 8.723 8.733 8.261 8.397 11.985 14.912 1...

 

Scottish horse trainer Mark JohnstonPersonal informationNationalityScottishBorn (1959-10-10) 10 October 1959 (age 64)Glasgow, ScotlandHome townGlasgowAlma materUniversity of GlasgowOccupationRacehorse trainerSpouseDeirdre JohnstonChildrenCharlie Johnston, Angus Johnston Mark Johnston 2018 Middleham Lower Moor, near where Johnston trains Mark Johnston (born 10 October 1959) is a Scottish racehorse trainer based in Middleham, North Yorkshire, England. Born in Glasgow, he studied ...

 

Disambiguazione – Se stai cercando altri significati, vedi Piaggio (disambigua). Piaggio & C.Logo Stato Italia Forma societariaSocietà per azioni Borse valoriBorsa Italiana: PIA ISINIT0003073266 Fondazione24 gennaio 1884 a Sestri Ponente Fondata daRinaldo Piaggio Sede principalePontedera GruppoIMMSI (50,07%) Controllate Aprilia Moto Guzzi Piaggio Vespa Derbi Gilera[1] Persone chiave Matteo Colaninno (presidente)[2] Michele Colaninno (AD)[2] SettoreAuto...

1942 Indian-independence speech by Mahatma Gandhi Quit India speech2017 postage stamp of India commemorating the Quit India MovementDateAugust 8, 1942 (1942-08-08)VenueGowalia Tank MaidanTypeSpeechTargetBritish colonial government, Indian publicOrganized byMahatma Gandhi Mahatma Gandhi, 1942 The Quit India speech was given by Mahatma Gandhi on the eve of the Quit India movement, August 8, 1942. His address was issued shortly before midnight at the Gowalia Tank Maidan park in Bo...

 

Los primeros mil valores de φ ( n ) {\displaystyle \scriptstyle \varphi (n)} .[1]​ La función φ de Euler (también llamada función indicatriz de Euler o función totiente) es una función importante en teoría de números. Si n es un número entero positivo, entonces φ(n) se define como la cantidad de enteros positivos menores a n y coprimos con n, es decir, formalmente se puede definir como:[2]​[3]​ φ ( n ) = | { m ∈ N   |   m ≤ n &...