Теоре́ма де Гуа — одно из обобщений теоремы Пифагора на старшие размерности.
Высечем из кубапирамиду, отрезав плоскостью одну из его вершин. Тогда для такой пирамиды верно следующее соотношение:
квадрат площади грани противолежащей вершине куба (вершине при прямом угле) равен сумме квадратов площадей граней прилежащих к этому углу (см. рисунок).
Иными словами, если мы заменим плоский прямой угол трёхмерным, отрезки — гранями, а треугольник — пирамидой, то теорема снова окажется верна, но не для длин сторон, а для площадей граней полученной пирамиды.
Существует обобщение этой теоремы[1] для n-мерного пространства и ортогональных n-симплексов: сумма квадратов всех (n− 1)-мерных объёмов граней, прилегающих к ортогональному углу n-симплекса, равна квадрату (n− 1)-мерного объёма грани, противоположной ортогональному углу. Ортогональным углом называется угол n-симплекса, все прилегающие к которому (n− 1)-мерные грани попарно ортогональны. Теорема де Гуа является частным случаем этой теоремы для 3-симплексов (то есть тетраэдров), а теорема Пифагора — для 2-симплексов (обычных плоских треугольников).
Выразим ребра DA, DB и DC прямоугольного тетраэдра через единичные координатные векторы , и [1]:
где — длины соответствующих сторон тетраэдра.
Для векторов AB и АС имеем:
Поскольку площадь треугольника равна половине векторного произведения двух его сторон,
Возведя последнее выражение в квадрат и раскрыв скобки c учётом того, что попарные векторные произведения единичных координатных векторов равны единице, получим
Площади граней ABD, ACD и BCD равны
откуда
Доказательство № 2
Известно, что площадь проекции плоской фигуры на некоторую плоскость равна площади этой фигуры, умноженной на косинус двугранного угла между фигурой и плоскостью проекции[2]. Проекциями треугольника ABC на координатные плоскости являются треугольники ABD, ACD и BCD. Поэтому
где — направляющие косинусы нормали к плоскости ABC.