Микроэлеме́нты не́фти — химические элементы, присутствующие в нефти в количестве 0,02—0,03 % от общей её массы. Обнаружено более 60 микроэлементов, большая часть которых представлена металлами и содержится в основном в смолисто-асфальтеновых компонентах➤. Данные примеси определяются химическими, физико-химическими и физическими методами анализа➤.
Общее количество микроэлементов в нефти редко превышает 0,02—0,03 % от общей её массы, что затрудняет выделение и идентификацию соединений, в которые эти химические элементы входят. Известно, что микроэлементы могут находиться в нефти в виде мелкодисперсных водных растворов солей, тонкодисперсных взвесей минеральных пород, а также в виде комплексов и молекулярных соединений с органическими веществами. Такие соединения подразделяют на 5 видов[3]:
Наибольшее количество микроэлементов в нефти представлено металлами. Металлические компоненты в основном содержатся в смолисто-асфальтеновых веществах (САВ) нефти. Ванадий, которого содержится в нефтях больше всего из этой группы, полностью концентрируется в САВ, а в масляных фракциях этот элемент практически полностью отсутствует. Никель также в основном находится в высокомолекулярных компонентах нефти, однако в небольших количествах он встречается и в маслянистых фракциях тяжёлой нефти. Также в относительно больших концентрациях в нефти присутствуют железо, щелочные и щелочноземельные металлы[4].
Концентрация ванадия достигает 10−2 %. Наиболее изученной формой данного металла в нефти являются его комплексы с порфиринами (ванадилпорфирины). Существуют также и непорфириновые соединения ванадия, их, как правило, разделяют на две группы[4]:
комплексы с лигандами псевдопорфириновой структуры (хлорины, бензопорфирины и др.);
комплексы с тетрадентатными лигандами, имеющие смешанные донорные атомы (β-кетоимины, β-дикетоны, о-меркаптоанилы, β-дитионы).
Они различаются степенью ароматичности (первый тип имеет повышенную ароматичность) и устойчивостью к кислотному деметаллированию (первый тип обладает высокой устойчивостью)[4].
Концентрация никеля достигает 10−3 %. Как и ванадий, никель встречается и в порфириновых, и в непорфириновых комплексах. По своей природе эти соединения аналогичны, и с возрастанием молекулярной массы нефти доля непорфириновых веществ возрастает, а доля порфириновых комплексов падает[4].
Хром и марганец в нефти находятся в соединениях, аналогичных ванадилпорфиринам и обнаруживаются в широком диапазоне нефтяных фракций. Железо содержится в нефти в концентрациях от 10−4 до 10−3 %. Природа его соединений не изучена, предполагается, что Fe также находится в виде порфириновых комплексов[4].
Цинк обнаружен в нефти в конентрациях от 10−5 до 10−3 %, ртуть — от 10−7 до 10−5 %. В основном эти эементы концентрируются в высококипящих фракциях и CAB. Их природа не выяснена, однако предполагается, что цинк может находиться в виде комплекса с порфиринами, а ртуть — в соединении с диалкил- или диарил-радикалами[4].
Также в нефти в незначительных концентрациях обнаружены радиоактивные элементы: урана — от 10−8 до 10−4 %, тория — от 10−8 до 10−7 %, радия — от 10−13 до 10−12 %[4].
Неметаллы
Наиболее распространёнными неметаллическими компонентами в нефти являются галогены. Их содержание в нефти колеблется от 10−2 до 10−4 % (хлора — 10−2 %, йода и брома от 10−3 до 10−4 %, фтор в нефти не обнаружен). Природа этих соединений не установлена, но известно, что при перегонке хлорорганических веществ в нефти выделяется хлороводород[4].
Ещё одним элементом-неметаллом, присутствующим в нефти, является фосфор. Его содержание достигает 10−3 %[5]. О химической структуре фосфора известно, что в дистилляте присутствуют соединения, имеющие связи P—C, P—H и P—S. Также доказано, что фосфор в нефти относится именно к органическим соединениям, так как во время исследований был обнаружен только «дистиллятный» фосфор, а фосфаты (неорганические соединения фосфора) в дистиллят попасть не могут[6].
Методы определения
Микроэлементы нефти можно определять химическими, физико-химическими и физическими методами анализа[7].
К методам химического анализа относится титриметрия. Как правило, её применяют для определения таких элементов, как свинец, барий, кальций и цинк. Основным физико-химическим методом является фотометрия, которую используют при анализе нефтепродуктов на свинец, ванадий и мышьяк[7].
Стандартные химические и физико-химические методы определения микроэлементов
Нормативный документ
Способ определения
Определяемые элементы
ГОСТ 13210-72
Титриметрический метод
Pb
ГОСТ 13538-68
Ba, Ca, Zn
ГОСТ 10364-90
Фотометрический метод
V
UOP387-62
As
ГОСТ 28828-90
Pb
ISO 3830:1993
ASTM D3341-05
При определении микроэлементов в нефтепродуктах также широко применяются и физические методы анализа. Сюда относятся фотометрия пламени, атомно-абсорбционная спектрометрия и атомно-эмиссионная спектроскопия, атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой и рентгенофлуоресцентный анализ. Основным достоинством физических методов является то, что они способны определять одновременно большое количество различных микроэлементов в широком диапазоне их концентраций[7].
Атомно-абсорбционная спектрометрия Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой
Cu
ASTM D5184-01
Al, Si
UOP389-04
Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой
14 элементов
Стандартные физические методы определения микроэлементов (органические матрицы)
Нормативный документ
Способ определения
Определяемые элементы
ГОСТ Р 51942-2002
Атомно-абсорбционная спектрометрия
Pb
UOP946-96
As
ASTM D3237-02
Pb
ASTM D3605-00(2005)
Na, Ca, V, Pb
ASTM D3831-01
Mn
ASTM D4628-02
Ba, Ca, Mg, Zn
ASTM D5863-00a(2005) (B)
Ni, V, Fe, Na
ASTM D6732-04
Cu
ISO 14597:1997
Рентгенофлуоресцентный анализ
V, Ni
UOP842-83
Ni, Fe, S, V
ASTM D492705
Ba, Ca, P, S, Zn
ASTM D5059-98(2003)e1
Pb
ASTM D6376-99
Многоэлементный анализ
ASTM D6443-04
Ca, Cl, Cu, Mg, P, S, Zn
ASTM D6481-99(2004)
Ca, P, S, Zn
ASTM D6595-00(2005)
Атомно-эмиссионная спектроскопия
Многоэлементный анализ
ASTM D6728-01
ISO 10478:1994
Атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой
Al, Si
ASTM D4951-02
8 элементов
ASTM D5185-02e2
22 элемента
ASTM D5600-04
Многоэлементный анализ
ASTM D7040-04
P
ASTM D7111-05
19 элементов
ASTM D7151-05
Многоэлементный анализ
Роль микроэлементов в изучении нефтеобразования
Изучение микроэлементов интересно с точки зрения происхождения нефти, так как содержание некоторых элементов характерно в том числе для растений и животных, что может объяснять родственность с ними нефтей[8].
Однако, согласно обзору докторов химических наукМ. А. Лурье и Ф. К. Шмидта, биогенная теория генезиса нефти не полностью объясняет то, как в нефть попали металлические компоненты. Согласно органической теории, никель и ванадий появились в нефтях в процессе многоступенчатого замещения меди в её комплексах и железа и магния в гемах и производных хлорофилла. Однако хлорофилл, как и гемоглобин, в нефти никогда не был найден, а порфирины могут быть абиогенного происхождения: они входят в состав метеоритов и синтезируются в соответствующих условиях, а также присутствуют в мантийныхксенолитах[9].
Отмечается также зависимость между содержанием в нефти серы и содержанием ванадия и никеля (чем больше сернистых соединений, тем больше V- и Ni-компонентов). Это даёт основание считать, что эти компоненты являются «первичными» и попали в нефть на стадии донных илов[10].
Примечания
↑Надиров Н. К., Котова А. В., Камьянов В. Ф. и др. Металлы в нефтях. — Алма-Ата: Наука, 1984. — С. 142. — 448 с.
↑Давыдова С. Л., Тагасов В. И. Нефть и нефтепродукты в окружающей среде. — М.: Изд-во РУДН, 2004. — 163 с.
↑Проскуряков В. А., Драбкин А. Е. Химия нефти и газа. — Санкт-Петербург: Химия, 1995. — С. 295—299. — 448 с. — ISBN 5-7245-1023-5.
↑ 123456789Батуева И. Ю., Гайле A. A., Поконова Ю. В. и др. Химия нефти. — Л.: Химия, 1984. — С. 283—298. — 360 с.
↑Камьянов В. Ф., Аксенов В. С., Титов В. И. Гетероатомные компоненты нефти. — Новосибирск: Наука, 1983. — С. 175. — 239 с.
↑Карцев А. А. Основы геохимии нефти и газа. — М.: Недра, 1969. — С. 89—97. — 272 с.