Метод Крамера

Ме́тод Крамера (правило Крамера) — способ решения систем линейных алгебраических уравнений с числом уравнений равным числу неизвестных с ненулевым главным определителем матрицы коэффициентов системы (причём для таких уравнений решение существует и единственно)[1].

Описание метода

Для системы линейных уравнений с неизвестными (над произвольным полем)

с определителем матрицы системы , отличным от нуля, решение записывается в виде

(-й столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В такой форме метод Крамера справедлив без предположения, что отличен от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы и , либо набор состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.

Пример

Система линейных уравнений с вещественными коэффициентами:


Определители:

В определителях столбец коэффициентов при соответствующей неизвестной заменяется столбцом свободных членов системы.

Решение:

Пример:

Определители:

Вычислительная сложность

Метод Крамера требует вычисления определителей порядка . При использовании метода Гаусса для вычисления определителей метод имеет сложность по элементарным операциям сложения-умножения порядка , что сложнее, чем метод Гаусса при прямом решении системы. Поэтому метод, с точки зрения затрат времени на вычисления, считался непрактичным. Однако в 2010 году было показано, что метод Крамера может быть реализован со сложностью , сравнимой со сложностью метода Гаусса[2].

Применение

Решение систем 2×2 и 3×3

Любые методы, связанные с алгебраическими преобразованиями, чреваты делением на ноль — а метод Крамера без всяких ухищрений даст решение всегда, если оно существует.

Теоретические выкладки

Метод Крамера широко используется в различных выкладках:

  • Метод Лагранжа (дифференциальные уравнения)
  • Неявно заданные системы: при и считаем, что x и y — зависимые переменные, u и v — независимые. Тогда, например, .

Литература

  • Мальцев И. А. Основы линейной алгебры. — Изд. 3-е, перераб., М.: «Наука», 1970. — 400 c.

Примечания

  1. Cramer, Gabriel. Introduction à l'Analyse des lignes Courbes algébriques (фр.) 656–659. Geneva: Europeana (1750). Дата обращения: 18 мая 2012.
  2. Ken Habgood and Itamar Arel. 2010. Revisiting Cramer's rule for solving dense linear systems. In Proceedings of the 2010 Spring Simulation Multiconference (SpringSim '10)

См. также