Задача Буземана — Петти

Задача Буземана — Петти — вопрос выпуклой геометрии, сформулированный Буземаном и Петти в 1956 году.

Правда ли, что симметричное выпуклое тело с бо́льшими центральными сечениями гиперплоскостями имеет бо́льший объём?

Ответ положительный в размерностях , и отрицательный в размерностях .

Задача знаменита тем, что в размерности , был дан сначала (неправильный) отрицательный ответ, a через несколько лет положительный. При этом обе статьи были опубликованы одним и тем же автором в одном из самых престижных математических журналов, Annals of Mathematics.

Формулировка

Пусть и — выпуклые тела в -мерном евклидовом пространстве с общим центром симметрии такие, что

для каждой гиперплоскости , проходящей через центр симметрии. Верно ли, что

История

  • В размерности 2 задача тривиальна, ответ положительный.
  • 1956 Буземан и Петти показали, что ответ будет положительным, если первое тело является шаром.
  • 1975 Лармен и Роджерс[англ.] построили контрпример в размерностях .
  • 1986, Кит Болл доказал, что взяв куб как первое тело и подходящий шар как второе, получаем контрпример в размерностях .
  • 1988, Лютвак показал что ответ на задачу в данной размерности положителен тогда и только тогда, когда все симметричные выпуклые тела в этой размерности являются телами сечений.
  • Джиэннопулос и Бурген независимо построили контрпримеры в размерностях .
  • Пэпэдимитракис и Гарднер независимо построили контрпримеры в размерностях 5 и 6.
  • 1994 Гарднер дал положительный ответ в размерности .
  • 1994 Гаоюн Чжан опубликовал работу (в Annals of Mathematics), в которой в частности утверждал, что в размерности ответ отрицательный.
  • 1997 Александр Колдобский опроверг утверждение Гаоюн Чжана.
  • 1999 После изучения, результатов Колдобского, Чжан быстро доказал, что на самом деле в размерности ответ утвердительный. Эта более поздняя работа была также опубликована в Annals of Mathematics.

Вариации и обобщения

  • Теорема единственности Минковского утверждает, что если два симметричных выпуклых тела имеют равновеликие сечения любой гиперплоскостью, проходящий через их общий центр, то эти два тела равны.
  • Задача Шепарда — аналогичная задача, в которой вместо сечений, рассматриваются проекции на все возможные гиперплоскости.

Ссылки