Доверительная область — обобщение понятия доверительного интервала на случай многомерного параметра[1][2][3][4][5][6] целевой функции, которая аппроксимируется с помощью числовой функции, часто квадратичной: если найдена числовая функция, соответствующая точности целевой функции внутри доверительной области, то область расширяется, и наоборот, если точность аппроксимации низкая, то область сужается. Под точностью аппроксимации обычно понимается ширина доверительной области[7].
Метод доверительной области известен также, как одношаговый метод. В некотором смысле он двойственен методу линейного поиска — в методе доверительной области сначала выбирают размер шага (размер доверительной области), затем его направление, в методе линейного поиска выбирают, сначала направление шага, а затем его размер.
Подходящий размер вычисляется после сравнения отношения ожидаемого улучшения по числовой функции и действительного улучшения, полученного вычислением целевой функции,
В качестве критерия расширения или сужения, используется простой принцип — числовая функция достоверна только в области, где она обеспечивает приемлемую аппроксимацию.
Пример
Концептуально, в алгоритме Левенберга — Марквардта целевая функция итеративно аппроксимируется поверхностью второго порядка, затем решается соответствующая система линейных уравнений и оценка обновляется, после чего цикл повторяется до достижения нужной точности аппроксимации. Если использовать только этот алгоритм и если начальное предположение было «слишком далеко» от оптимального решения, то метод может не дать сходимости к нужной точности аппроксимации. По этой причине алгоритм ограничивает каждый шаг, предотвращая слишком «далёкую» аппроксимацию. Алгоритм определяет «слишком далеко» следующим образом. Вместо решения относительно метод предлагает решать , где является диагональной матрицей с той же диагональю, что и у матрицы A, а является параметром, который контролирует размер доверительной области. Геометрически, метод добавляет параболоид с центром в , что приводит к меньшему шагу каждой итерации.
Смысл заключается в том, чтобы изменять размер доверительной области (). На каждой итерации квадратичная аппроксимация предсказывает уменьшение целевой функции (здесь и ниже означает полученное аппроксимацией значение, а означает действительное значение функции), которая ожидается меньшей по сравнению с истинным уменьшением. Если дано , мы можем вычислить
После вычисления отношения мы можем изменить размер доверительной области. В общем случае ожидается, что будет чуть меньше, чем , так что отношение окажется в интервале между 0.25 и 0.5. Если отношение больше 0.5, то значит взят слишком большой шаг, поэтому требуется расширить доверительную область (уменьшить ) и продолжить итерации. Если отношение меньше 0.25, то истинная функция «слишком сильно» отличается от аппроксимации в доверительной области, значит требуется уменьшить доверительную область (увеличиваем ) и продолжить итерации.
Литература
Примечания
Ссылки