Алгоритм Бернштейна — Вазирани (англ.Bernstein–Vazirani algorithm) — квантовый алгоритм, решающий задачу нахождения -битного числа (в иностранной литературе также употребляется термин скрытая строка[1]), скрытого в черном ящике. Предложен Итаном Бернштейном и Умешем Вазирани в 1993 году➤. Данный алгоритм решает поставленную задачу значительно быстрее, чем это возможно в неквантовой постановке➤. Алгоритм может применяться в базах данных, атаках на блочные шифры, тестах производительности для квантовых компьютеров➤, был реализован на 5- и 16-кубитных квантовых компьютерах IBM➤.
Алгоритм предложен профессором Калифорнийского университета в БерклиУмешем Вазирани[англ.] и его студентом Итаном Бернштейном. При описании алгоритма современные источники, как правило, ссылаются на выступление Бернштейна и Вазирани[2] на симпозиуме по теории вычислений[англ.] в 1993 году[3]. Алгоритм Бернштейна — Вазирани является расширенной версией алгоритма Дойча — Йожи, поскольку вместо определения принадлежности функции к определённому классу — сбалансированная или постоянная (то есть принимает либо значение 0, либо 1 при любых аргументах) — алгоритм находит «спрятанный» вектор, позволяющий однозначно определить значение функции в любой точке[4].
Алгоритм Бернштейна — Вазирани демонстрирует в решаемой им задаче зазор между классическими и квантовыми алгоритмами по наименьшему требуемому количеству запросов к оракулу (чёрному ящику). Даже если разрешить использование вероятностных алгоритмов (с заранее ограниченной вероятностью ошибки), решение классической задачи потребует обращений к оракулу, в то время как в квантовом алгоритме достаточно обращений к нему[5].
Постановка задачи Бернштейна — Вазирани
Классическая задача
Рассмотрим оракул, преобразующий -битное число в один бит, то есть .
Причём , где — скалярное произведение вида: . Считаем, что один вызов функции осуществляется за константное время.
Постановка задачи в квантовой модели похожая, но доступ к оракулу в ней осуществляется не напрямую через функцию , а через линейный оператор, действующий на систему из кубита:
Квантовым состояниям и соответствуют векторы и . Вектор для совместного состояния может быть представлен как произведение [6].
Аналогично классическому случаю, предполагается, что обращение к оракулу, вычисляющему результат применения оператора к входящей системе из кубита, выполняется за константное время.
В квантовом случае, как и в классическом, предполагается, что , и требуется найти [1].
Алгоритм
Классическая задача
В классическом случае при каждом вызове оракула возвращается один бит числа , поэтому чтобы найти -битное число , нужно вызвать оракул раз. Ниже приведён вариант обращений к оракулу, позволяющих целиком восстановить [1]:
Количество обращений к оракулу в классическом случае равно , где — количество бит числа . Несложными теоретико-информационными рассуждениями можно показать, что эта оценка не улучшаема даже в рамках класса BPP[1].
А также тот факт, что применение оператора к состоянию вида , где даёт в результате величину [1].
По шагам работа алгоритма может быть представлена следующим образом[1]:
На первом шаге оператор Адамара применяется к -кубитному состоянию , состоящего из основного состояния и вспомогательного бита[англ.]: ;
Затем к результату предыдущего шага применяется оператор : ;
После чего к первым кубитам результата применяется , что, с учётом того, что , даёт[4]: .
В результате измерение входного регистра даст значение [1]. Таким образом, в квантовой постановке задачи достаточно обращений к оракулу. В общем случае построение и использование оракула требует логических элементов, но это не учитывается при анализе алгоритма в данной модели, так как значимым для неё является только число обращений к оракулу[1]. Алгоритм в таком виде был реализован на 5- и 16-кубитных компьютерах IBM[1], также возможно собрать оптическую cистему, реализующую алгоритм[7].
Реализация алгоритма на компьютерах IBM
В любой практической реализации алгоритма Бернштейна — Вазирани основную сложность составляет создание оракула, так как построение и использование оракула требует логических элемента.[1]
Кроме сложности построения оракула, практической реализации сопутствуют проблемы с точностью. Тестирование системы проводилось на 1-, 2- и 3-битных строках, на которых симулятор IBM-Qiskit[англ.] выдавал правильный ответ со 100 % точностью. Затем было проведено тестирование 1- и 2-битных строк на 5-кубитной машине ibmqx4 и 16-кубитной ibmqx5, где были зафиксированы ошибки вычислений и сильное отклонение от ожидаемого результата[1].
Практическое применение
Алгоритм Бернштейна — Вазирани может применяться:
В базах данных[8]. С помощью алгоритма доступ к нужным данным теоретически можно получить значительно быстрее, чем в классическом случае.
В атаке на блочный шифр[9]. Алгоритм Бернштейна — Вазирани предоставляет несколько новых, более совершенных, чем в классическом случае, способов атаки на блочный шифр.
В тесте производительности для квантовых компьютеров[10]. Алгоритм используется в качестве теста производительности для 11-кубитного квантового компьютера.
↑А.А. Ежов.Некоторые проблемы квантовой нейротехнологии (рус.) // Научная сессия МИФИ–2003. V всероссийская научно-техническая конференция «Нейроинформатика–2003»: лекции по нейроинформатике. Часть 2. — 2003. — С. 44—45. Архивировано 21 января 2022 года.
↑K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N. C. Pisenti, M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin, M. Keesan, C. Monroe & J. Kim. Benchmarking an 11-qubit quantum computer // Nature Communications. — 2019. — Vol. 10. — С. 5464. — doi:10.1038/s41467-019-13534-2.