Spațiu prehilbertian

Această pagină se referă la produse scalare abstracte în spațiile vectoriale. Pentru produsul scalar canonic din , vedeți Produs scalar.
Spaţiile abstracte ale matematicii superioare. Săgeata indică incluziunea.

În matematică, mai precis în algebră liniară și în analiza funcțională, un spațiu prehilbertian este un spațiu vectorial înzestrat cu un produs scalar, adică o aplicație care asociază fiecărei perechi de vectori un scalar (un element al corpului de bază al spațiul vectorial).

Această noțiune de produs scalar generalizează produsul scalar canonic din la spații vectoriale abstracte, și permite extinderea unor concepte de geometrie euclidiană în aceste spații (precum noțiunea de ortogonalitate).

Numele prehilbertian se referă faptului că dacă pentru distanța indusă de produsul scalar spațiul este și complet, atunci devine spațiu Hilbert. Spațiile prehilbertiene au fost numite și spații unitare în lucrări mai vechi, dar acestă terminologie nu mai este folosită decât rar.

Definiție

Se notează corpul scalarilor cu F și este fie corpul numerelor reale R sau cel al numerelor complexe C.

Un spațiu prehilbertian este un spațiu vectorial V peste F împreună cu o formă formă biliniară simetrică pozitiv-definită (în cazul lui R) sau o formă seschiliniară hermitiană pozitiv-definită (în cazul lui C), numită produs scalar:

și satisface următoarea axiomă pentru toate :

Această condiție înseamnă că , deoarece .
(Conjugarea este adesea notată cu asterisc, astfel: , ca și transpusa conjugată.)
Combinând aceasta cu simetria conjugatei, se obține:
  • Nenegativitatea:
(Aceasta are sens pentru că pentru toate .)
  • Nedegenerarea:
implică .

Deci produsul scalar este o formă Hermitică nenegativă și nedegenerată.

Proprietatea unui spațiu prehilbertian ca

și este cunoscută ca aditivitate.

Se observă că dacă F=R, atunci proprietatea de simetrie a conjugatei este simplă simetrie a produsului scalar, adică

Observații.

  • În condițiile definiției de mai sus, un produs scalar este liniar și în variabila a doua. Astfel, dacă avem scalarii a, b și vectorii x, y1, y2:
  • Majoritatea autorilor matematicieni pun condiția ca un produs scalar să fie liniar în primul argument și conjugat-liniar în al doilea, conform convenției de mai sus. Mulți fizicieni adoptă convenția inversă. Această convenție este nematerială, dar definiția inversă furnizează o mai bună legătură cu notația bra-ket folosită de fizicieni în mecanica cuantică (permițând scalarilor să rezulte direct din ket, care reprezintă vectori și conjugând scalarii extrași din bra, care reprezintă funcționale liniare) și acum este uneori folosită și de matematicieni. Unii autori au adoptat convenția că < , > este liniar în prima componentă și < | > este liniar în a doua, deși aceasta nu e o notație răspândită universal. De exemplu (Emch [1972]) nu urmează această convenție.
  • Există varii motive tehnice pentru care este necesară restricționarea mulțimilor de scalari la R și C în definiție. Pe scurt, grupul de bază trebuie să conțină un subgrup ordonat (pentru a avea sens noțiunea de nenegativitate) și astfel trebuie să aibă caracteristica egală cu 0. Aceasta exclude automat grupurile finite. Grupul de bază trebuie să aibă și structuri adiționale, cum ar fi un automorfism.

Exemple

Un exemplu trivial îl constituie numerele reale cu înmulțirea standard ca produs scalar

Mai general, orice spațiu euclidian Rn cu produsul scalar

Forma generală a unui produs scalar peste Cn este dată de:

unde M este orice matrice pozitiv-definită, și x* este conjugata transpusă a lui x.

Pe spațiul vectorial C([a, b]) al funcțiilor reale continue pe intervalul [a, b] se definește produsul scalar canonic a două funcții f, g prin formula:

Norma spațiilor prehilbertiene

Spațiile cu produs scalar au o normă naturală

Aceasta este bine definită de axioma de nenegativitate din definiția spațiului cu produs scalar. Norma lui x este considerată ca lungime a vectorului x și posedă proprietățile:

  1. și
  2. (inegalitatea triunghiului).

Direct din axiome, se pot demonstra următoarele:

egalitatea apare dacă și numai dacă x și y sunt liniar dependente. Aceasta este una din cele mai importante inegalități din matematică. În literatura matematică rusească este cunoscută și sub numele de Inegalitatea Cauchy-Buniakowski-Schwarz.
  • Ortogonalitate: Interpretarea geometrică a produsului scalar în termeni de unghi și lungime motivează mare parte din terminologia geometrică folosită în ce privește aceste spații. Într-adevăr, o consecință imediată a inegalității Cauchy-Schwarz este că justifică definirea unghiului între doi vectori nenuli x și y (cel puțin în cazul F = R) prin identitatea
Se presupune că valoarea unghiului este alesă în intervalul [0, +π]. Aceasta este analogă situației din spațiul euclidian cu 2 dimensiuni. Analog, spunem că doi vectori nenuli x, y din V sunt ortogonali dacă și numai dacă produsul lor scalar este zero.
Demonstrația proprietății de omogenitate este trivială.
Ultimele două proprietăți arată că funcția definită este într-adevăr normă.
Datorită inegalității triunghiului și axiomei 2, vedem că ||·|| este o normă care transformă V într-un spațiu vectorial normat și astfel într-un spațiu metric. Cele mai importante spații cu produs scalar sunt cele care sunt complete în raport cu această metrică; acestea se numesc spații Hilbert. Fiecare spațiu prehibertian V este un subspațiu dens al unui spațiu Hilbert. Acest spațiu Hilbert este unic determinat de V și este construit prin completarea lui V.
Demonstrațiile ambelor identități necesită doar exprimarea definiției normei în termeni de produs real și simplificare, folosind proprietatea de aditivitate a fiecărei componente. Numele de teorema lui Pitagora derivă din interpretarea geometrică a rezultatului ca fiind analogă cu teorema din geometrie. Se observă că demonstrația teoremei lui Pitagora în geometrie este considerabil mai elaborată datorită lipsei de structuri utile.
Prin inducție pe teorema lui Pitagora, rezultă:
  • Dacă x1, ..., xn sunt vectori ortogonali, adică <xj, xk> = 0 pentru indici diferiți j, k, atunci
În lumina inegalității Cauchy-Schwarz, observăm și că <·,·> este continuă din V × V pe F. Aceasta ne permite generalizarea teoremei lui Pitagora la infinit de mulți termeni de sumă:
  • Identitatea lui Parseval: Presupunând că V este un spațiu prehilbertian complet, dacă {xk} sunt vectori ortogonali doi câte doi din V, atunci
dacă seria infinită din stânga este convergentă. Completitudinea spațiului este necesară pentru a ne asigura că șirul de sume parțiale
care este cunoscut ca fiind șir Cauchy este convergentă.

Șiruri ortonormale

Un sir {ek}k este ortonormal dacă și numai dacă este ortogonal și ek are norma 1. O bază ortonormală într-un spațiu prehilbertian de dimensiune finită V este un șir ortonormal care generează V. Această definiție a bazei ortonormale nu generalizează convenabil în cazul dimensiunilor infinite, unde conceptul (corect formulat) are o importanță majoră. Folosind norma asociată cu produsul scalar, există noțiunea de submulțime densă, și definiția corectă pentru o bază ortonormală este cea că spațiul generat de ea trebuie să fie dens.

Procedeul Gram-Schmidt este o metodă canonică care pornește de la un șir liniar independent {vk}k pe un spațiu prehilbertian și produce un șir ortonormal {ek}k astfel încât oricare ar fi n

Prin procedura de ortonormalizare Gram-Schmidt, se arată:

Teoremă. Orice spațiu prehilbertian separabil V are o bază ortonormală.

Identitatea lui Parseval conduce imediat la următoarea teoremă:

Teoremă. Fie V un spațiu prehilbertian separabil și {ek}k o bază ortonormală a lui V. Atunci aplicația

este o aplicație liniară izometrică Vl2 cu imaginea densă.

Această teoremă poate fi privită ca o formă abstractă a seriilor Fourier, în care o bază ortonormală arbitrară joacă rolul seriei de polinoame trigonometrice. Se observă că mulțimea de indecși poate fi luată ca orice mulțime numărabilă. În particular, se obține următorul rezultat din teoria seriilor Fourier:

Teoremă. Fie V spațiul prehilbertian . Atunci secvența (indexată pe mulțimea numerelor întregi) de funcții continue

este o bază ortonormală a spațiului cu L2 ca produs scalar. Aplicația

este o aplicație liniară izometrică cu imaginea densă.

Ortogonalitatea șirului {ek}k se deduce imediat din faptul că dacă j ≠ k, atunci

Șirul este normal prin construcția lui, pentru că are coeficienții aleși de așa natură încât norma este 1. În cele din urmă, faptul că șirul generează un spațiu dens, în norma produsului scalar, rezultă din faptul că șirul generează un subspațiu dens în spațiul funcțiilor periodice continue definite pe cu norma uniformă. Acesta este conținutul teoremei lui Weierstrass privind densitatea uniformă a polinoamelor trigonometrice.

Operatori în spațiile prehilbertiene

Unele tipuri de aplicații liniare A dintr-un spațiu cu produs scalar V în alt spațiu cu produs scalar W au relevanță:

  • Aplicații liniare continue, adică A este liniară și continuă în raport cu metrica definită, sau echivalent, A este liniară și mulțimea realilor nenegativi {||Ax||}, unde x ia valori în bila unitate închisă a lui V, este mărginită.
  • Operatori liniari simetrici, adică A este liniară și <Ax, y> = <x, A y> oricare ar fi x, y din V.
  • Izometrii, adică A este liniară și <Ax, Ay> = <x, y> pentru orice x, y din V, sau echivalent, A este liniară și ||Ax|| = ||x|| pentru orice x din V. Toate izometriile sunt injective. Izometriile sunt morfisme între spații prehilbertiene, și morfismele spațiilor prehilbertiene reale sunt transformări ortogonale.
  • Izomorfisme izometrice, adică A este o izometrie surjectivă (și deci bijectivă). Izomorfismele izometrice sunt cunoscute și ca operatori unitari.

Din punctul de vedere al teoriei spațiilor cu produs scalar, nu este necesară distincția între două spații izometric izomorfe. Teorema spectrală furnizează o formă canonică pentru operatorii normali simetrici și unitari peste spațiile prehilbertiene finite. O generalizare a teoremei spectrale este valabilă pentru operatorii normali continui din spațiile Hilbert.

Bibliografie

  • S. Axler, Linear Algebra Done Right, Springer, 2004
  • G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley Interscience, 1972.
  • N. Young, An Introduction to Hilbert Spaces, Cambridge University Press, 1988

Read other articles:

Sebuah tempat tinggal sederhana di Gurun Gobi. Sebuah tempat tinggal biasanya berwujud bangunan rumah, tempat berteduh, atau struktur lainnya yang digunakan sebagai tempat manusia tinggal. Istilah ini dapat digunakan untuk rupa-rupa tempat tinggal, mulai dari tenda-tenda nomaden hingga apartemen-apartemen bertingkat. Dalam konteks tertentu tempat tinggal memiliki arti yang sama dengan rumah, kediaman, akomodasi, perumahan, dan arti-arti yang lain. Unit sosial yang tinggal di sebuah tempat tin...

 

 

Albertville Lambang kebesaranAlbertville Lokasi di Region Auvergne-Rhône-Alpes Albertville Koordinat: 45°40′36″N 6°23′36″E / 45.6767°N 6.3933°E / 45.6767; 6.3933NegaraPrancisRegionAuvergne-Rhône-AlpesDepartemenSavoieArondisemenAlbertvilleKantonAlbertville-Nord dan Albertville-SudPemerintahan • Wali kota (2008–2014) Philippe MasureLuas • Land117,54 km2 (677 sq mi) • Populasi218.480 • Kepadata...

 

 

Yoroi atau Akaitoi Odai Yoroi (赤糸威大鎧) dari Periode Kamakura, abad 13-14 Masehi, Ditempatkan di Galeri Harta Nasional Kuil Kasuga, Jepang Doumaru atau Kashi Torii Ito Kata Akai Odoshi Doumaru (樫鳥糸肩赤威胴丸), dari Zaman Muromachi abad ke-15, Ditempatkan di Museum Nasional Tokyo, Harta Budaya Penting Gusoku Armour warisan keluarga Kishu Tokugawa (Jepang: 紀州徳川家code: ja is deprecated , Kishū Tokugawa-ke) dari Zaman Edo, abad ke-17, berada di Minneapolis Institute o...

KPP Michael Collins dari misi Apollo 11 Kit Preferensi Pribadi (KPP) adalah wadah yang digunakan untuk membawa barang-barang pribadi antariksawan selama program Gemini, Apollo, Pesawat Ulang Alik, dan Stasiun Luar Angkasa Internasional. Barang-barang yang dipilih antariksawan untuk dibawa ke luar angkasa disetujui oleh manajemen NASA dan disimpan di KPP. Informasi tentang isi kit biasanya dirahasiakan oleh antariksawan, meskipun beberapa isinya telah dipajang atau diberikan sebagai penghargaa...

 

 

Rekonstruksi bangunan Daigokuden Istana Heian di Heian Jingū, Kyoto. Istana Heian atau Daidairi (大内裏code: ja is deprecated ) adalah istana kekaisaran di ibu kota Jepang Heian-kyō (Kyoto) dari 794 hingga 1227. Istana berada di ujung utara kota, dan dibangun meniru perencanaan kota Chang'an pada zaman Dinasti Tang dan Dinasti Sui. Istana ini berfungsi sebagai tempat kediaman resmi kaisar dan pusat administrasi Jepang selama zaman Heian (794-1185). Istana berada di kawasan tertutup yang ...

 

 

Questa voce sull'argomento chimici statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Leo Hendrik Baekeland Leo Hendrik Baekeland (Sint-Martens-Latem, 14 novembre 1863[1] – Beacon, 23 febbraio 1944[1]) è stato un chimico statunitense di origine belga, inventore della bachelite, la prima resina sintetica. Indice 1 Biografia 2 Note 3 Altri progetti 4 Collegamenti esterni Biografia Figlio di un calzolaio, si appassionò a chi...

Pour les articles homonymes, voir Concurrence (homonymie). Deux enseignes de restauration rapide concurrentes côte à côte à Paris. La concurrence est la rivalité entre plusieurs agents économiques pour acquérir des parts de marché sur un même marché, en vendant des biens identiques ou similaires. La concurrence est ainsi une compétition entre des producteurs, d'ordinaire des entreprises, pour capter la demande émanant des consommateurs. Pour agir en concurrent, un agent doit disp...

 

 

2022 uncrewed Moon-orbiting NASA mission EM-1 redirects here. For other uses, see EM1 (disambiguation). Artemis 1The Space Launch System launches from Kennedy Space Center's LC-39BNames Artemis I (official) Exploration Mission-1 (EM-1) (formerly) Mission typeUncrewed lunar orbital test flightOperatorNASACOSPAR ID2022-156ASATCAT no.54257Websitewww.nasa.gov/artemis-1Mission duration25 days, 10 hours, 55 minutes, 50 seconds (unofficial)[1][2]25 days, 10 hours and 53...

 

 

Coppa d'UcrainaSport Calcio Tipoclub FederazioneFFU Paese Ucraina OrganizzatoreFederazione calcistica dell'Ucraina Cadenzaannuale Aperturaluglio Chiusuramaggio Partecipanti32 Formulaeliminazione diretta Sito Internetuacup.com.ua StoriaFondazione1992 Detentore Dinamo Kiev Record vittorie Dinamo Kiev Šachtar (13) Ultima edizioneKubok Ukraïny 2021-2022 Edizione in corsoKubok Ukraïny 2023-2024 Trofeo o riconoscimento Modifica dati su Wikidata · Manuale La Coppa d'Ucra...

American politician Cecil O. Creal (19 December 1899 – 20 November 1986) was mayor of Ann Arbor, in the U.S. state of Michigan, from 1959 to 1965. Life and career Creal grave Creal was born in 1899 in Kiantone, Chautauqua County, New York. During World War I, he served in the U.S. Navy. Creal married Dama Godfrey of Ann Arbor in 1925. He was an Episcopalian. Creal had two sons, Richard and Robert. Under Ann Arbor's old system of municipal governance, Creal served as President of the Ann...

 

 

Location of Essex County in Virginia This is a list of the National Register of Historic Places listings in Essex County, Virginia. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Essex County, Virginia, United States. The locations of National Register properties and districts for which the latitude and longitude coordinates are included below, may be seen in an online map.[1] There are 17 properties and districts...

 

 

Gallic tribe Eburovician hemistatere. The Eburovīcēs or Aulercī Eburovīcēs (Gaulish: *Eburouīcēs/Eburowīcēs, 'those who vanquish by the yew') were a Gallic tribe dwelling in the modern Eure department during the Iron Age and the Roman period. They were part of the Aulerci.[1] Name Statue of Jupiter Stator from Gisacum (Vieil-Évreux). 1st c. AD. They are mentioned as Aulerci Eburovices by Caesar (mid-1st c. BC),[2] Aulerci qui cognominantur Eburovices by Pliny (1st c....

Trump Tower ManilaAlternative namesTrump Tower at Century CityGeneral informationStatusCompletedTypeResidentialLocationCentury City, MakatiCountryPhilippinesCoordinates14°33′55″N 121°01′42″E / 14.56514°N 121.0283°E / 14.56514; 121.0283GroundbreakingJune 26, 2012CompletedNovember 12, 2017[1]Cost$150 million(₱6 billion)OwnerCentury Properties GroupHeight250.70 m (822.51 ft)[2]Technical detailsFloor count57Floor area34,000 square m...

 

 

American politician (1892–1967) William LaneLane in 1950Chair of the National Governors AssociationIn officeJanuary 3, 1949 – June 19, 1949Preceded byLester C. HuntSucceeded byFrank Carlson52nd Governor of MarylandIn officeJanuary 3, 1947 – January 10, 1951Preceded byHerbert O'ConorSucceeded byTheodore McKeldinAttorney General of MarylandIn office1931–1935GovernorAlbert RitchiePreceded byThomas H. RobinsonSucceeded byHerbert O'Conor Personal detailsBornWilliam Presto...

 

 

Pour les articles homonymes, voir John Smith et Smith. John Lawrence SmithJohn Lawrence SmithBiographieNaissance 17 décembre 1818KentuckyDécès 12 octobre 1883 (à 64 ans)LouisvilleSépulture Cave Hill CemeteryNationalité américaineFormation Université de VirginieActivités Chimiste, professeur d'université, journaliste, explorateur, médecinAutres informationsA travaillé pour Université de VirginieMembre de Académie américaine des arts et des sciencesAcadémie américaine des...

Сибирский горный козёл Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКла�...

 

 

Ligatures in the Kana writing system You can help expand this article with text translated from the corresponding article in Japanese. (February 2018) Click [show] for important translation instructions. View a machine-translated version of the Japanese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machi...

 

 

Stephen StrangeIl dottor Stephen Strange interpretato da Benedict Cumberbatch in Doctor Strange nel Multiverso della Follia (2022) UniversoMarvel Cinematic Universe Basato suDottor Strangedi Steve DitkoStan Lee AutoriJon Spaihts Scott Derrickson C. Robert Cargill 1ª app. inDoctor Strange (2016) Interpretato daBenedict Cumberbatch Voce orig.Benedict Cumberbatch (What If...?) Voce italianaFrancesco Bulckaen Caratteristiche immaginarieNome completoStephen Vincent Strange EpitetoDottor Stra...

Stola adalah vestimentum liturgis dari berbagai denominasi Kristen. Stola berupa sehelai selempang kain dengan bordiran, dulunya berbahan dasar sutera, panjangnya sekitar tujuh setengah sampai sembilan kaki dan selebar tiga sampai empat inci, makin ke ujung makin lebar. Etimologi dan sejarah Kata Latin stola berasal dari kata Yunani στολη (stolē), pakaian, arti aslinya adalah tatanan atau kelengkapan. Stola mula-mula merupakan semacam syal yang dikenakan menutupi bahu dan menjuntai di b...

 

 

У этого термина существуют и другие значения, см. Агава (значения). Агава Agave deserti Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:МонокотыПорядок:СпаржецветныеСемейство:СпаржевыеПодсемейство:АгавовыеРод:Агава Международное научно...